If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2(6-3x)(9x+3)=(6x-12)(3-21x)
We move all terms to the left:
2(6-3x)(9x+3)-((6x-12)(3-21x))=0
We add all the numbers together, and all the variables
2(-3x+6)(9x+3)-((6x-12)(-21x+3))=0
We multiply parentheses ..
2(-27x^2-9x+54x+18)-((6x-12)(-21x+3))=0
We calculate terms in parentheses: -((6x-12)(-21x+3)), so:We multiply parentheses
(6x-12)(-21x+3)
We multiply parentheses ..
(-126x^2+18x+252x-36)
We get rid of parentheses
-126x^2+18x+252x-36
We add all the numbers together, and all the variables
-126x^2+270x-36
Back to the equation:
-(-126x^2+270x-36)
-54x^2-(-126x^2+270x-36)-18x+108x+36=0
We get rid of parentheses
-54x^2+126x^2-270x-18x+108x+36+36=0
We add all the numbers together, and all the variables
72x^2-180x+72=0
a = 72; b = -180; c = +72;
Δ = b2-4ac
Δ = -1802-4·72·72
Δ = 11664
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{11664}=108$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-180)-108}{2*72}=\frac{72}{144} =1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-180)+108}{2*72}=\frac{288}{144} =2 $
| у=(5x^2+3x-4)5 | | X²=y+1 | | Y=20+0.6x | | 4³x+¹=64 | | A^2+9a-200=0 | | 4|2(2x-6)-3(x+3)|=3(-2x-2) | | K(x)=x²-4 | | 15x+60=10x+75 | | x/80=100/750 | | 5x(3x+15)=0 | | 17=3x-15 | | 1.2x^2-32x+960=0 | | 0.8x^2+32X-960=0 | | 0.17x=1 | | 5^(2x-1)=(1/25) | | 2k×k=0 | | 3.14*x^2=37 | | J(x)=2x+5 | | 3-5z=11-2z | | 9m-7=3m+41 | | (56+)t7=9 | | 3/y+5=2/y+1 | | 2x²+10x+10,5=0 | | 2x³+-1x²+-25x+30=0 | | f/5-6=18 | | -2x+38=7x+32 | | 3(2x+1)=2(1-5)+6x+11 | | 4n^2-55=-9n | | 4(2x+2)=5x-10 | | -x+13=4(4x-1) | | 3(t-7)-5t=15 | | x-16=2(x-1)-3 |