2(7/16a+5)=7/8a

Simple and best practice solution for 2(7/16a+5)=7/8a equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(7/16a+5)=7/8a equation:



2(7/16a+5)=7/8a
We move all terms to the left:
2(7/16a+5)-(7/8a)=0
Domain of the equation: 16a+5)!=0
a∈R
Domain of the equation: 8a)!=0
a!=0/1
a!=0
a∈R
We add all the numbers together, and all the variables
2(7/16a+5)-(+7/8a)=0
We multiply parentheses
14a-(+7/8a)+10=0
We get rid of parentheses
14a-7/8a+10=0
We multiply all the terms by the denominator
14a*8a+10*8a-7=0
Wy multiply elements
112a^2+80a-7=0
a = 112; b = 80; c = -7;
Δ = b2-4ac
Δ = 802-4·112·(-7)
Δ = 9536
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{9536}=\sqrt{64*149}=\sqrt{64}*\sqrt{149}=8\sqrt{149}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(80)-8\sqrt{149}}{2*112}=\frac{-80-8\sqrt{149}}{224} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(80)+8\sqrt{149}}{2*112}=\frac{-80+8\sqrt{149}}{224} $

See similar equations:

| -49=5(2x-1)/2-5=-30 | | 150+(v-8)=180 | | 34=1/2(9x+5) | | 4x+7)+(6x-9)=180 | | t-(-4)=13 | | -16=-b/2 | | 3(d+6)=3 | | (3x+10)=(5x+4) | | (-5w-9)=(3w+7) | | (9x-29)=(6x+4) | | 2.1875x=1 | | 3t-2t-7=0 | | x+(x*18/100)=32000 | | (4x-3)+(x+28)=(7x-15) | | 2(10+x)4=168 | | 16000-2.2x=11275=16.7x | | 1.25(14x-10)=7.5 | | 9x+15x-9=6(4x+8) | | 3x+17x-9=5(4x+3) | | 3*23-20+y-6=180 | | 51x+1.229x-79=32(40x+51) | | 4x+-3=-3x+15 | | 8y+42=5y-9+90 | | 10(18-8/5x)+2x=10x+6(18-8/5x) | | 11y-4=9y+14 | | 11y-4=9y+4 | | 6x1=x6 | | 17.75+0.13h=16.53+0.05 | | -9b-3=3b-51 | | 8q+1=33 | | 7t+5=117 | | 14x+11+95=180 |

Equations solver categories