2(8/7)x=64/7

Simple and best practice solution for 2(8/7)x=64/7 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(8/7)x=64/7 equation:



2(8/7)x=64/7
We move all terms to the left:
2(8/7)x-(64/7)=0
Domain of the equation: 7)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
2(+8/7)x-(+64/7)=0
We multiply parentheses
16x^2-(+64/7)=0
We get rid of parentheses
16x^2-64/7=0
We multiply all the terms by the denominator
16x^2*7-64=0
Wy multiply elements
112x^2-64=0
a = 112; b = 0; c = -64;
Δ = b2-4ac
Δ = 02-4·112·(-64)
Δ = 28672
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{28672}=\sqrt{4096*7}=\sqrt{4096}*\sqrt{7}=64\sqrt{7}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-64\sqrt{7}}{2*112}=\frac{0-64\sqrt{7}}{224} =-\frac{64\sqrt{7}}{224} =-\frac{2\sqrt{7}}{7} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+64\sqrt{7}}{2*112}=\frac{0+64\sqrt{7}}{224} =\frac{64\sqrt{7}}{224} =\frac{2\sqrt{7}}{7} $

See similar equations:

| 3^m=5^m | | -8+n=-(1-8n) | | 3(16)-2(4.5)=x | | 7x-1-6x=-5 | | 6/13x+1/3=2/5-7/13x+2/5 | | 2(2w+2)+3w=44 | | 2(1.4x+8)=4(0.7x+4) | | 100-17y=258-6y | | 4x-12+2.4=4x+14.4 | | 8(6x-2)=416 | | 14s=15s+20 | | 2(x-3)+3x+5=4x+7 | | 4x2−19x+2=0 | | 4.4x+1.4-5.1x=6.6 | | P-3=2p-11 | | 3(x+5)+x=2(2x+4)-3 | | (X+2)(x-4)=(x+3)^2 | | (1/9)(2/3)x=36/729 | | w/4-11=30 | | n+12=92 | | v-12=63 | | (X+2)(x-4)=(x+3)2 | | -10=3-p | | 3x+4x-12+9=7x+28-14 | | 8b-3=8b-8 | | 69=5y+9 | | 7m=224 | | 1/6x-2/3=3/5x+5/3 | | 8(2.4+9x)=11(7x-3.9)-5x | | 6x/4=9 | | 300+40=x | | 7-3=2j-j |

Equations solver categories