2(k-1)=10k(k-2)

Simple and best practice solution for 2(k-1)=10k(k-2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(k-1)=10k(k-2) equation:



2(k-1)=10k(k-2)
We move all terms to the left:
2(k-1)-(10k(k-2))=0
We multiply parentheses
2k-(10k(k-2))-2=0
We calculate terms in parentheses: -(10k(k-2)), so:
10k(k-2)
We multiply parentheses
10k^2-20k
Back to the equation:
-(10k^2-20k)
We get rid of parentheses
-10k^2+2k+20k-2=0
We add all the numbers together, and all the variables
-10k^2+22k-2=0
a = -10; b = 22; c = -2;
Δ = b2-4ac
Δ = 222-4·(-10)·(-2)
Δ = 404
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{404}=\sqrt{4*101}=\sqrt{4}*\sqrt{101}=2\sqrt{101}$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-2\sqrt{101}}{2*-10}=\frac{-22-2\sqrt{101}}{-20} $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+2\sqrt{101}}{2*-10}=\frac{-22+2\sqrt{101}}{-20} $

See similar equations:

| 36-4(2z-3)=0 | | 7x+15=-3x+43 | | |d-100|=50 | | 23-5+7x3-(25-9-5)=28 | | 5h+5=45 | | 67-u=193 | | 10r-6r+3=19 | | 38.34+.25x=110 | | 5x+1.8=2.8 | | 3X5^x+25=100 | | |p-0.2|=0.5 | | 11=4q=15+3q | | 121-w=257 | | |p-0.2|=0.4 | | 37.58+.50x=120 | | 10/9=3q | | -36=6v+5(v-5) | | -25(x-4)=-55(x-10 | | d+d/18+3=22 | | 202=9-w | | (2004(3421)=20000x | | 4(u+5)-2u=30 | | 9d-5=7d+43 | | 140-v=192 | | -3x-5x+8=83 | | 3x/4+5/6=x-1/2 | | X/6-5=x/3-2 | | 182-u=237 | | 8.5(7y+9)=-24.5+6y | | C=37.58+50x | | 4z^2+16z+11=0 | | 4(x^2)+7x-6=0 |

Equations solver categories