2(m+2.5)=4m(m-0.5)

Simple and best practice solution for 2(m+2.5)=4m(m-0.5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(m+2.5)=4m(m-0.5) equation:



2(m+2.5)=4m(m-0.5)
We move all terms to the left:
2(m+2.5)-(4m(m-0.5))=0
We multiply parentheses
2m-(4m(m-0.5))+5=0
We calculate terms in parentheses: -(4m(m-0.5)), so:
4m(m-0.5)
We multiply parentheses
4m^2-2m
Back to the equation:
-(4m^2-2m)
We get rid of parentheses
-4m^2+2m+2m+5=0
We add all the numbers together, and all the variables
-4m^2+4m+5=0
a = -4; b = 4; c = +5;
Δ = b2-4ac
Δ = 42-4·(-4)·5
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{6}}{2*-4}=\frac{-4-4\sqrt{6}}{-8} $
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{6}}{2*-4}=\frac{-4+4\sqrt{6}}{-8} $

See similar equations:

| 2x-2(-3x=3)=58 | | 6+5n=-3 | | 93+x=3x+13 | | 45x+40=65x+30 | | 2=-8/2a | | 9x+16+12x-5=180 | | (x+2)+1(x-3)=5 | | 19=3.14(x^2) | | 6x+10+44=180 | | 7x-1+63=90 | | 4x+31÷2=x+7 | | 2x-6x=-10+16x | | 5.3x=7.6 | | 3y2=300 | | |5x-6|=|6x-8| | | 15x-8=2(4x+6) | | 3(x-0.87)-2x=4.98 | | 4y-5y=-8 | | 44+(10+a)=2a | | . 61=3x+4x+5 | | 2/5g+7=15 | | 4(2+3x)=3(2x-4) | | 39=1.3bb= | | 4(5c-1)-2=18c+8 | | x/6+6=6 | | 6x+2-44=0 | | 9x-3=2(4x-4) | | 1/6y=1/42 | | (5x-7)^(1/3)+3=5 | | 4x-x+3=-2+18 | | 4x+17-3x=-6-12 | | 3m+3=14 |

Equations solver categories