2(m+25)=4(m-0.5)m=

Simple and best practice solution for 2(m+25)=4(m-0.5)m= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(m+25)=4(m-0.5)m= equation:



2(m+25)=4(m-0.5)m=
We move all terms to the left:
2(m+25)-(4(m-0.5)m)=0
We multiply parentheses
2m-(4(m-0.5)m)+50=0
We calculate terms in parentheses: -(4(m-0.5)m), so:
4(m-0.5)m
We multiply parentheses
4m^2-2m
Back to the equation:
-(4m^2-2m)
We get rid of parentheses
-4m^2+2m+2m+50=0
We add all the numbers together, and all the variables
-4m^2+4m+50=0
a = -4; b = 4; c = +50;
Δ = b2-4ac
Δ = 42-4·(-4)·50
Δ = 816
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{816}=\sqrt{16*51}=\sqrt{16}*\sqrt{51}=4\sqrt{51}$
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{51}}{2*-4}=\frac{-4-4\sqrt{51}}{-8} $
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{51}}{2*-4}=\frac{-4+4\sqrt{51}}{-8} $

See similar equations:

| -2x=-3(x+1)/2 | | n/7+3=-6 | | 5x+8-7x=-4x+8 | | 12x+10=7x+11 | | (3x-4)(2x+5)-15x=x(3x+2)-12 | | 3x+10=-x+38 | | -4(x+7)=56 | | 6x-50=2x | | 10+4n=6-2n | | (3x-4)(2x+5)-15=x(3x+2)-12 | | 14/6=q6 | | 5m=28-7m | | 5.25n=-99.75 | | 3(x-2)/4=-3 | | 179=-3+7(3v+2) | | 7.25x=130.5 | | 3/2x-6=3/5x+4 | | 2/3x+7=49 | | 5x+17=2x+185 | | 7(k+3)=45-3(12-k)= | | 9f+f=20 | | -51=-15+12x | | t=π160/16 | | 13+m=19;6 | | 5=9^x-1 | | 2.8(x+5)-1=21.4 | | 6=4+n/7 | | 6(x-1)-7=-9.4 | | 287=-7(1-6b) | | 18x+95=287 | | 16v+15=100-v | | 66-x=90 |

Equations solver categories