2(m2+14m+48)+9(m2+14m+48)-5=0

Simple and best practice solution for 2(m2+14m+48)+9(m2+14m+48)-5=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(m2+14m+48)+9(m2+14m+48)-5=0 equation:



2(m2+14m+48)+9(m2+14m+48)-5=0
We add all the numbers together, and all the variables
2(+m^2+14m+48)+9(+m^2+14m+48)-5=0
We multiply parentheses
2m^2+9m^2+28m+126m+96+432-5=0
We add all the numbers together, and all the variables
11m^2+154m+523=0
a = 11; b = 154; c = +523;
Δ = b2-4ac
Δ = 1542-4·11·523
Δ = 704
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{704}=\sqrt{64*11}=\sqrt{64}*\sqrt{11}=8\sqrt{11}$
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(154)-8\sqrt{11}}{2*11}=\frac{-154-8\sqrt{11}}{22} $
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(154)+8\sqrt{11}}{2*11}=\frac{-154+8\sqrt{11}}{22} $

See similar equations:

| z+-24=73 | | -3x+8=x-14+3x | | -3x+8=x-14+2x | | (3b-1)+b=71 | | 2(x-9)=9x-39 | | Y=c-10 | | -3x+8=x-14+1x | | 12v+15=145-v | | 6k+13=9k-2 | | 16.8-0.4k=-7.4k | | v/10=2 | | 20x+7=x+102 | | -3s=90 | | b-12=50 | | 4n-19=10n-49 | | (1r+4)+r=36 | | 4x-19+x=5x+8 | | 78=v+18 | | 4n-11=11n-74 | | 3x-19+x=5x+8 | | 6^t=87 | | 3/2=x+5/5 | | -4b=5-5b | | 5x+30x-2=7(5x+8) | | 10k+5=13k-4 | | 12=h+19 | | 5(2x+6)=8x+12 | | 20-4.25w=75.25 | | 8x-19+x=5x+8 | | r-12=-8 | | 19x+2=x+146 | | 17x+3=4x+42 |

Equations solver categories