2(n-1)(2n-1)+(3n-1)(n+1)=21

Simple and best practice solution for 2(n-1)(2n-1)+(3n-1)(n+1)=21 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(n-1)(2n-1)+(3n-1)(n+1)=21 equation:



2(n-1)(2n-1)+(3n-1)(n+1)=21
We move all terms to the left:
2(n-1)(2n-1)+(3n-1)(n+1)-(21)=0
We multiply parentheses ..
2(+2n^2-1n-2n+1)+(3n-1)(n+1)-21=0
We multiply parentheses
4n^2-2n-4n+(3n-1)(n+1)+2-21=0
We multiply parentheses ..
4n^2+(+3n^2+3n-1n-1)-2n-4n+2-21=0
We add all the numbers together, and all the variables
4n^2+(+3n^2+3n-1n-1)-6n-19=0
We get rid of parentheses
4n^2+3n^2+3n-1n-6n-1-19=0
We add all the numbers together, and all the variables
7n^2-4n-20=0
a = 7; b = -4; c = -20;
Δ = b2-4ac
Δ = -42-4·7·(-20)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{576}=24$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-24}{2*7}=\frac{-20}{14} =-1+3/7 $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+24}{2*7}=\frac{28}{14} =2 $

See similar equations:

| x/0.35=0.75 | | -15x5=x | | X+0.7=1—0.2x | | 1/8x+3/5x=87 | | 7/2u=-5/6 | | y/3=4=15 | | 0.15x+0.08=1 | | 5x=6x=99 | | 8x-1=6x-5=90 | | 0.5/x=0.75 | | 7√x+4=2x | | 5(3-4x)=7x+8 | | 49x+16=4x^2 | | 3(3p+2)=51 | | 7/2√x+2=x | | 4(x-3)-5(2x-4)=2(x+2) | | 4x^2+49x-16=0 | | 4x^2-49x-16=0 | | (x7/14)=1-3/2x | | (x-7/14)=1(-3/2x) | | 5t-2=2t+10 | | (2x+1/2)=28 | | 2x-7|x+5=0 | | 14*a=126 | | x÷4+6=13 | | 2x+x+90=90 | | 28=2x+(1/2) | | x+(x+10)+(x+20)=100 | | t²+10t-96=0 | | 4x^2+1=x^2-5 | | 25/150=x/500 | | 3+-7x^-1=2+-4x^-1 |

Equations solver categories