If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 2(p + 5) + 3p(p + -2) = 2(p + 6) Reorder the terms: 2(5 + p) + 3p(p + -2) = 2(p + 6) (5 * 2 + p * 2) + 3p(p + -2) = 2(p + 6) (10 + 2p) + 3p(p + -2) = 2(p + 6) Reorder the terms: 10 + 2p + 3p(-2 + p) = 2(p + 6) 10 + 2p + (-2 * 3p + p * 3p) = 2(p + 6) 10 + 2p + (-6p + 3p2) = 2(p + 6) Combine like terms: 2p + -6p = -4p 10 + -4p + 3p2 = 2(p + 6) Reorder the terms: 10 + -4p + 3p2 = 2(6 + p) 10 + -4p + 3p2 = (6 * 2 + p * 2) 10 + -4p + 3p2 = (12 + 2p) Solving 10 + -4p + 3p2 = 12 + 2p Solving for variable 'p'. Reorder the terms: 10 + -12 + -4p + -2p + 3p2 = 12 + 2p + -12 + -2p Combine like terms: 10 + -12 = -2 -2 + -4p + -2p + 3p2 = 12 + 2p + -12 + -2p Combine like terms: -4p + -2p = -6p -2 + -6p + 3p2 = 12 + 2p + -12 + -2p Reorder the terms: -2 + -6p + 3p2 = 12 + -12 + 2p + -2p Combine like terms: 12 + -12 = 0 -2 + -6p + 3p2 = 0 + 2p + -2p -2 + -6p + 3p2 = 2p + -2p Combine like terms: 2p + -2p = 0 -2 + -6p + 3p2 = 0 Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. -0.6666666667 + -2p + p2 = 0 Move the constant term to the right: Add '0.6666666667' to each side of the equation. -0.6666666667 + -2p + 0.6666666667 + p2 = 0 + 0.6666666667 Reorder the terms: -0.6666666667 + 0.6666666667 + -2p + p2 = 0 + 0.6666666667 Combine like terms: -0.6666666667 + 0.6666666667 = 0.0000000000 0.0000000000 + -2p + p2 = 0 + 0.6666666667 -2p + p2 = 0 + 0.6666666667 Combine like terms: 0 + 0.6666666667 = 0.6666666667 -2p + p2 = 0.6666666667 The p term is -2p. Take half its coefficient (-1). Square it (1) and add it to both sides. Add '1' to each side of the equation. -2p + 1 + p2 = 0.6666666667 + 1 Reorder the terms: 1 + -2p + p2 = 0.6666666667 + 1 Combine like terms: 0.6666666667 + 1 = 1.6666666667 1 + -2p + p2 = 1.6666666667 Factor a perfect square on the left side: (p + -1)(p + -1) = 1.6666666667 Calculate the square root of the right side: 1.290994449 Break this problem into two subproblems by setting (p + -1) equal to 1.290994449 and -1.290994449.Subproblem 1
p + -1 = 1.290994449 Simplifying p + -1 = 1.290994449 Reorder the terms: -1 + p = 1.290994449 Solving -1 + p = 1.290994449 Solving for variable 'p'. Move all terms containing p to the left, all other terms to the right. Add '1' to each side of the equation. -1 + 1 + p = 1.290994449 + 1 Combine like terms: -1 + 1 = 0 0 + p = 1.290994449 + 1 p = 1.290994449 + 1 Combine like terms: 1.290994449 + 1 = 2.290994449 p = 2.290994449 Simplifying p = 2.290994449Subproblem 2
p + -1 = -1.290994449 Simplifying p + -1 = -1.290994449 Reorder the terms: -1 + p = -1.290994449 Solving -1 + p = -1.290994449 Solving for variable 'p'. Move all terms containing p to the left, all other terms to the right. Add '1' to each side of the equation. -1 + 1 + p = -1.290994449 + 1 Combine like terms: -1 + 1 = 0 0 + p = -1.290994449 + 1 p = -1.290994449 + 1 Combine like terms: -1.290994449 + 1 = -0.290994449 p = -0.290994449 Simplifying p = -0.290994449Solution
The solution to the problem is based on the solutions from the subproblems. p = {2.290994449, -0.290994449}
| x^2+30x-500=0 | | -4=-3x+13 | | 7x-18=-15 | | (2x(y^2)-2y)dx+((3x^2)-4x)dy=0 | | 96=2(x+4)+2x | | x^2+30-500=0 | | 6x+10=4x+48 | | 4x^3-10x^2-8x+20=0 | | 6x+40=2x+96 | | 4x^3-8x^2+10=0 | | 3x-(2x+2)=2x-43 | | 1/(17C6) | | 1/17c6 | | (y-x)dx+(x+y)dy=0 | | 2(2x^3-5x^2-4x+10)=0 | | 20=-8u+4(u+3) | | 180+16796758475= | | 2y-34=18 | | 6x(8x)(-3x)= | | 32=-4+4x | | 4x-33=2x+15 | | x^2-460x+24000=0 | | 3=7(4-2n)-6n | | x(2x+-3)-3(5-83x)= | | 4m^2-8m-77=0 | | 9x+8=3x-1 | | x+9.1=4-3.5 | | 6x+10y+15+3x-20y-5=x | | 4-3[-2(2-7)-7(7-6)]= | | x^2-3x-348=0 | | -23x+234=970 | | a^2-12a+3=0 |