2(p-1)-7(3p-2)=7p(p-4)

Simple and best practice solution for 2(p-1)-7(3p-2)=7p(p-4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(p-1)-7(3p-2)=7p(p-4) equation:



2(p-1)-7(3p-2)=7p(p-4)
We move all terms to the left:
2(p-1)-7(3p-2)-(7p(p-4))=0
We multiply parentheses
2p-21p-(7p(p-4))-2+14=0
We calculate terms in parentheses: -(7p(p-4)), so:
7p(p-4)
We multiply parentheses
7p^2-28p
Back to the equation:
-(7p^2-28p)
We add all the numbers together, and all the variables
-19p-(7p^2-28p)+12=0
We get rid of parentheses
-7p^2-19p+28p+12=0
We add all the numbers together, and all the variables
-7p^2+9p+12=0
a = -7; b = 9; c = +12;
Δ = b2-4ac
Δ = 92-4·(-7)·12
Δ = 417
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-\sqrt{417}}{2*-7}=\frac{-9-\sqrt{417}}{-14} $
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+\sqrt{417}}{2*-7}=\frac{-9+\sqrt{417}}{-14} $

See similar equations:

| I5x–6I=3x+4 | | C(x)=0.09x-9.50= | | 34+11=7a-13 | | 4x+36=2x+24 | | x/75=43/23 | | (4+m)^2-36=0 | | x/75=4323 | | -7x-8=13x+40 | | 4+5(7-x)/9=-7 | | 2h^2-9h=18 | | 8x–10+4x=26 | | 2a-4=4a-2a-4 | | 2-3x=4x+23 | | 14x^2-x-42=0 | | -14x^2+x+42=0 | | 2^x-1=0.125 | | 17(6x-50)=204(7/24*x) | | 5,6-6+1,2x=1,6x+0,4 | | (4x−3)^2+(4x+3)^2=26 | | 10(x-3)=7x+50 | | 4y-20=3y+5 | | 2x-1/x-4/x+2=5 | | 18=a1+(-30) | | 7n^2+23n-180=0 | | 0=(9/5)(c)+32 | | 2x=180-40 | | 3x+x+x+90+80=180 | | -2+3•x=38-x | | 10x+45=285 | | (−327)+456=456+x=x | | 0.25x+3(2x-6)=7 | | -x-2=+ |

Equations solver categories