2(s1+3)=s1(4s-5)

Simple and best practice solution for 2(s1+3)=s1(4s-5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(s1+3)=s1(4s-5) equation:



2(s1+3)=s1(4s-5)
We move all terms to the left:
2(s1+3)-(s1(4s-5))=0
We add all the numbers together, and all the variables
2(s+3)-(s1(4s-5))=0
We multiply parentheses
2s-(s1(4s-5))+6=0
We calculate terms in parentheses: -(s1(4s-5)), so:
s1(4s-5)
We multiply parentheses
4s^2-5s
Back to the equation:
-(4s^2-5s)
We get rid of parentheses
-4s^2+2s+5s+6=0
We add all the numbers together, and all the variables
-4s^2+7s+6=0
a = -4; b = 7; c = +6;
Δ = b2-4ac
Δ = 72-4·(-4)·6
Δ = 145
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{145}}{2*-4}=\frac{-7-\sqrt{145}}{-8} $
$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{145}}{2*-4}=\frac{-7+\sqrt{145}}{-8} $

See similar equations:

| (x-2)²+(x-2)(x-2)=0 | | 8(m-5)=2(3m-8$ | | 0.6/0.8=x | | 7-(x)=14 | | x+4-1=0 | | 999f=4131 | | 13=g~3+4 | | 89c-9)=6(2c-12)-4c | | (x-2)2+(x-2)(x-2)=0 | | 1/2(x)-8=-2 | | 14x2+5x−6=0 | | 6x+5+3x=-13 | | 13=g√3+4 | | -4x=3=-17 | | ,2-6(2-p)=8 | | -4(4n+4)=-38+6n | | 3x/2+3=4 | | 1000f=4135.135135 | | 1/8x=0.5 | | (10)/(x)+8=(4)/(x)-2 | | 6k-5k=22 | | 11h+(-6h)=-5 | | 14j-10j+2j+1=19 | | 1-2b+5=-2 | | 4(x)-5=19 | | 1-4(2-p)=13 | | 2(s1+3)=s1(4s-5 | | 2x+1/3-x=3/5 | | -9+6(1-7s)=19 | | 7(d+1)+2=0 | | -5+5n-6n=-6 | | 12b-(-9b)+(-2)=19 |

Equations solver categories