2(u+1)4u=3(2u-1)+8

Simple and best practice solution for 2(u+1)4u=3(2u-1)+8 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(u+1)4u=3(2u-1)+8 equation:



2(u+1)4u=3(2u-1)+8
We move all terms to the left:
2(u+1)4u-(3(2u-1)+8)=0
We multiply parentheses
8u^2+8u-(3(2u-1)+8)=0
We calculate terms in parentheses: -(3(2u-1)+8), so:
3(2u-1)+8
We multiply parentheses
6u-3+8
We add all the numbers together, and all the variables
6u+5
Back to the equation:
-(6u+5)
We get rid of parentheses
8u^2+8u-6u-5=0
We add all the numbers together, and all the variables
8u^2+2u-5=0
a = 8; b = 2; c = -5;
Δ = b2-4ac
Δ = 22-4·8·(-5)
Δ = 164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{164}=\sqrt{4*41}=\sqrt{4}*\sqrt{41}=2\sqrt{41}$
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{41}}{2*8}=\frac{-2-2\sqrt{41}}{16} $
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{41}}{2*8}=\frac{-2+2\sqrt{41}}{16} $

See similar equations:

| 49.50+5x=25+8.50x | | 5+b=18 | | 3(n+2)=-12 | | 17=7r-11 | | 3400t=600 | | -x/6=39 | | 2(u+1)4u=33(2u-1)+8 | | -15w+9=-15w-12 | | (6x+72)=(2x+28) | | 6s+42=204 | | 9x+40=410 | | 11-4y=-3 | | -4(y+2)+4=2(y+6) | | 34x+95=3(14+9) | | 6y-22=2y-2 | | 34x+95=(14x+9) | | 2/3x9/20= | | 5x^-4x-1=0 | | -28-7x=-13x+2 | | -14x+3+22x=10-8x | | 9p-10=6p+5 | | 0.3(11x+4)=0.2(3x-48) | | Y=11x-3 | | 4(y+1)-y=3(y-1)=7 | | 16x+9=14x+27 | | 25=x+.15x | | 180-x=4x+12 | | 180-x=4(90-x)+12 | | 1/5(y-5)=-1/8(y+6) | | x2−2.451x+1.500=0 | | 4c+14=256 | | 25-(x+.15x)=x |

Equations solver categories