If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2(v-6)-9=-3(-8v+8)7v
We move all terms to the left:
2(v-6)-9-(-3(-8v+8)7v)=0
We multiply parentheses
2v-(-3(-8v+8)7v)-12-9=0
We calculate terms in parentheses: -(-3(-8v+8)7v), so:We add all the numbers together, and all the variables
-3(-8v+8)7v
We multiply parentheses
168v^2-168v
Back to the equation:
-(168v^2-168v)
2v-(168v^2-168v)-21=0
We get rid of parentheses
-168v^2+2v+168v-21=0
We add all the numbers together, and all the variables
-168v^2+170v-21=0
a = -168; b = 170; c = -21;
Δ = b2-4ac
Δ = 1702-4·(-168)·(-21)
Δ = 14788
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{14788}=\sqrt{4*3697}=\sqrt{4}*\sqrt{3697}=2\sqrt{3697}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(170)-2\sqrt{3697}}{2*-168}=\frac{-170-2\sqrt{3697}}{-336} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(170)+2\sqrt{3697}}{2*-168}=\frac{-170+2\sqrt{3697}}{-336} $
| -3v+22=-7(v-2) | | -11=-7v+2(v-8) | | 6x+4=x+4 | | F(x)=14x-3 | | P=0.25q^2-2q+8 | | 2/16=x/27 | | 50=t-1 | | 7/22=54/d | | w/3+3=w/4 | | 4x2+9x+5=0 | | 4(x–5)=1–3x | | 75x=32 | | 2+3+3X15=x | | 103x=x+4 | | Y=1/3x-1/8 | | 8x+3=6x-1 | | 8x+3=61-1 | | 9/2×1/63=a | | -17u-9=8 | | -8(x-7)=-5x+47 | | 9/2=a/63 | | 27-x=207 | | x+27=1/2(180-x) | | -6y+40=2(y-4) | | x^2-50x+672=0 | | (X+14)(x+7)=12 | | 2(h-8)-h=h=16 | | 3t^2+6t-68=4 | | 49=7^{4-5x} | | 5x2=10 | | 0.12x+0.5+x÷2=x/3+1.5 | | -9.40x=x |