2(w+3)-10=6(32-3w);w=

Simple and best practice solution for 2(w+3)-10=6(32-3w);w= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(w+3)-10=6(32-3w);w= equation:



2(w+3)-10=6(32-3w)w=
We move all terms to the left:
2(w+3)-10-(6(32-3w)w)=0
We add all the numbers together, and all the variables
2(w+3)-(6(-3w+32)w)-10=0
We multiply parentheses
2w-(6(-3w+32)w)+6-10=0
We calculate terms in parentheses: -(6(-3w+32)w), so:
6(-3w+32)w
We multiply parentheses
-18w^2+192w
Back to the equation:
-(-18w^2+192w)
We add all the numbers together, and all the variables
-(-18w^2+192w)+2w-4=0
We get rid of parentheses
18w^2-192w+2w-4=0
We add all the numbers together, and all the variables
18w^2-190w-4=0
a = 18; b = -190; c = -4;
Δ = b2-4ac
Δ = -1902-4·18·(-4)
Δ = 36388
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{36388}=\sqrt{4*9097}=\sqrt{4}*\sqrt{9097}=2\sqrt{9097}$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-190)-2\sqrt{9097}}{2*18}=\frac{190-2\sqrt{9097}}{36} $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-190)+2\sqrt{9097}}{2*18}=\frac{190+2\sqrt{9097}}{36} $

See similar equations:

| 3.95m+8.95=47.65+3 | | 5j+⅔=-⅙ | | 1000=y | | (90-x)+(180-3x)=180-(90-2x) | | -6x²-14x+360=0 | | 3t^2-6t-2=0 | | 112−i=21 | | 66x=165 | | −2=2u | | 6x-8=2=x | | −6u−2=−4u | | n^2-64=-16n | | 12x=3243 | | −3y+2=−9y | | -2(4x-1)+3=-3(x+5) | | 3(x+3)8x=21 | | -9+1=3x-6 | | -13x-12=20x+12 | | 3x-9.75=68.25 | | -4x+15=77 | | a+20=20 | | 5y-5=4y+2 | | 26=b-10 | | (3x+7)=(x-2) | | `35+2x=7x` | | 6(6y-4)-19=4(4y+3)-16 | | x2-4x+29=0 | | y/7+35=7 | | (5x+4)=(x-2) | | -5y-6=-16* | | 2(3x-1)+7/2=5x-2(32-7) | | y/5+8=16* |

Equations solver categories