2(w-3)5w=3(w+3)

Simple and best practice solution for 2(w-3)5w=3(w+3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(w-3)5w=3(w+3) equation:



2(w-3)5w=3(w+3)
We move all terms to the left:
2(w-3)5w-(3(w+3))=0
We multiply parentheses
10w^2-30w-(3(w+3))=0
We calculate terms in parentheses: -(3(w+3)), so:
3(w+3)
We multiply parentheses
3w+9
Back to the equation:
-(3w+9)
We get rid of parentheses
10w^2-30w-3w-9=0
We add all the numbers together, and all the variables
10w^2-33w-9=0
a = 10; b = -33; c = -9;
Δ = b2-4ac
Δ = -332-4·10·(-9)
Δ = 1449
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1449}=\sqrt{9*161}=\sqrt{9}*\sqrt{161}=3\sqrt{161}$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-33)-3\sqrt{161}}{2*10}=\frac{33-3\sqrt{161}}{20} $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-33)+3\sqrt{161}}{2*10}=\frac{33+3\sqrt{161}}{20} $

See similar equations:

| 61=8k+-27 | | 6h-h+5h-h=9 | | w-42/9=5 | | d/4+78=6 | | 15w+18w-7+1=-5w+1-7 | | t/3-2=5 | | 3.8x-(-1-99.7x)=2.6+13.3x | | 99+4y=180 | | d/6+43=46 | | 9(s+33)=18 | | 109+2a+7=180 | | 7x+9=10x-1 | | 2w-58=38 | | 7x+10=9x-1 | | w+12/3=8 | | 9t+10=37 | | 29+4v=81 | | 35· w = 15 | | v/3+12=19 | | n-54/4=7 | | -5-6x=2x+11 | | 3x+24x+54=33 | | 24-2s=6 | | 4(4x-7)-6=4(x-3)+62 | | 9h-10=64 | | 14+6=c | | 9h−10=64 | | 9h−-10=64 | | 25=5(c-79) | | 32=u/10+30 | | x=10.20×9 | | w/5+33=36 |

Equations solver categories