If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2(x+1)(x-1)=(2x+4)(x+3)
We move all terms to the left:
2(x+1)(x-1)-((2x+4)(x+3))=0
We use the square of the difference formula
x^2-((2x+4)(x+3))-1=0
We multiply parentheses ..
x^2-((+2x^2+6x+4x+12))-1=0
We calculate terms in parentheses: -((+2x^2+6x+4x+12)), so:We get rid of parentheses
(+2x^2+6x+4x+12)
We get rid of parentheses
2x^2+6x+4x+12
We add all the numbers together, and all the variables
2x^2+10x+12
Back to the equation:
-(2x^2+10x+12)
x^2-2x^2-10x-12-1=0
We add all the numbers together, and all the variables
-1x^2-10x-13=0
a = -1; b = -10; c = -13;
Δ = b2-4ac
Δ = -102-4·(-1)·(-13)
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-4\sqrt{3}}{2*-1}=\frac{10-4\sqrt{3}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+4\sqrt{3}}{2*-1}=\frac{10+4\sqrt{3}}{-2} $
| x+4/5=2-x+4/3 | | 3y^2=22y-32 | | 9x^2+13-x^2+4=0 | | 2^(x+3)=32 | | 3(x+4)-2(3x-4)=7 | | 9x=5(1/2x-32) | | 9x-24=0 | | 4c-3.7=16.3 | | 2(1-3x)=x²-3(2x+1) | | X2+4x+3x=0 | | A=72m^2 | | 8x+4(4x−3)=4(6x+4)−4 | | 6x-5=4×-9 | | 2(1-3u)=u²-3(2u+1) | | (x-5)•(x+3)=0 | | (x+2)(x-3)=(x+3)(x-1) | | 8x=-3x-2 | | (8x+24)/5=1 | | 9x=5/2x-160 | | -5=30+y | | 9x=10x-160 | | 10x-9=7x+12 | | bX5=15 | | (7x-8)(2x+4)=0 | | (3x-15÷2)=4x | | 5x/2+8=2x+17 | | 6+2(3v-5)=-4(2v-3)+4v | | 2x+6+4=-10 | | 10*5^3=2*5^x | | 5p2-8p=0 | | 2x+6+4=10 | | n-1=5n= |