2(x+4)/x-2+3=2x+1/x-2

Simple and best practice solution for 2(x+4)/x-2+3=2x+1/x-2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(x+4)/x-2+3=2x+1/x-2 equation:



2(x+4)/x-2+3=2x+1/x-2
We move all terms to the left:
2(x+4)/x-2+3-(2x+1/x-2)=0
Domain of the equation: x!=0
x∈R
Domain of the equation: x-2)!=0
x∈R
We add all the numbers together, and all the variables
2(x+4)/x-(2x+1/x-2)+1=0
We get rid of parentheses
2(x+4)/x-2x-1/x+2+1=0
We multiply all the terms by the denominator
2(x+4)-2x*x+2*x+1*x-1=0
We add all the numbers together, and all the variables
3x+2(x+4)-2x*x-1=0
We multiply parentheses
3x+2x-2x*x+8-1=0
Wy multiply elements
-2x^2+3x+2x+8-1=0
We add all the numbers together, and all the variables
-2x^2+5x+7=0
a = -2; b = 5; c = +7;
Δ = b2-4ac
Δ = 52-4·(-2)·7
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{81}=9$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-9}{2*-2}=\frac{-14}{-4} =3+1/2 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+9}{2*-2}=\frac{4}{-4} =-1 $

See similar equations:

| 9x-11+7x-3=4x+1 | | 241=143-v | | -3a=3a | | 4(x-6)-8=-3(-7x+8)-5x | | 8(x+2)=6(x+6) | | w/4+10=23 | | 11-12=3/4h | | 5x-19=2(x-2)+4 | | -4(x+6)=-2x-36 | | 0.98-10y=-8.2y-9.1-7.4y | | -4=w/3 | | .1025=x+1.5x.055 | | 2x²–8x+12=0 | | 4x-2(3x+7)=2x-7 | | a+4/a+3=1/a+3 | | 0.6(5+6.6x)+0.4x=4.3x-1.479(11.4-13.65x) | | 9(x1)=54 | | 6u=4u+8 | | -1/2(4x-20)-8=3(-4x+9 | | -5.93-1.2j-9.75=1.7j+9.55 | | r+16/6=10 | | 7^2x=343 | | -7-6b=-9b+2 | | 14+8s=70 | | 189=-7(-6+7n) | | 40+100+(2x)=180 | | 1-8p=-3p-4-4p | | m+16/9=3 | | -4+8-2m=-m+8 | | -5v-10=-6v-1 | | 8(d+96)=64 | | M12=2x-12 |

Equations solver categories