If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2(x+4)8x=14
We move all terms to the left:
2(x+4)8x-(14)=0
We multiply parentheses
16x^2+64x-14=0
a = 16; b = 64; c = -14;
Δ = b2-4ac
Δ = 642-4·16·(-14)
Δ = 4992
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4992}=\sqrt{64*78}=\sqrt{64}*\sqrt{78}=8\sqrt{78}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(64)-8\sqrt{78}}{2*16}=\frac{-64-8\sqrt{78}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(64)+8\sqrt{78}}{2*16}=\frac{-64+8\sqrt{78}}{32} $
| -8=4+6(8+x) | | 2b+17=27 | | 3(2y+8)=30 | | x/2=1/4= | | -7s-8s=15 | | 6-(5a)=1 | | 7(y-8)=-7 | | X+56.64=3.36;x= | | r+10=2r | | 1/2x-2=-1/2x-4 | | 10x+2=5x+2 | | -6+4x=x3+12 | | 2c+6c=-88 | | 5b−14=31 | | 17+6z=95 | | 3*(5/6)=x(1/6) | | 14-7c=28 | | 8-1/4n=2 | | x+16.4=64 | | -4d-8=28 | | x+161.4=64 | | 4y(3y+8)=113 | | 45x+14-23x=25 | | 25=5(q+10) | | 16;m=20/35 | | f2=196f | | 16=54-x/2 | | 1.6/0.8=8/x | | 0.1d=0.25d(d-30) | | -96=8w | | 11(x–8)=-187 | | (8c+3)(–7c+9)=0 |