If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2(x+5)5x=35
We move all terms to the left:
2(x+5)5x-(35)=0
We multiply parentheses
10x^2+50x-35=0
a = 10; b = 50; c = -35;
Δ = b2-4ac
Δ = 502-4·10·(-35)
Δ = 3900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3900}=\sqrt{100*39}=\sqrt{100}*\sqrt{39}=10\sqrt{39}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(50)-10\sqrt{39}}{2*10}=\frac{-50-10\sqrt{39}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(50)+10\sqrt{39}}{2*10}=\frac{-50+10\sqrt{39}}{20} $
| 4u-13=47 | | 13f-14=6f | | -t-2t=-15 | | 5y-10-3y=2y-120y | | -5+4x=-1+3x | | 6t-18=4t-4 | | -9g=17-8g | | a*4=12 | | 3s-94=2s-44 | | g-3/3=3 | | 4b−24−b=16−2b | | 2x–5=x–17 | | 3u+70=8u+5 | | -8h-3+9h=-26 | | 8j+j=-18 | | 78x=39 | | Y=9/5x-4 | | 2m+15+3m=m-5 | | x^2-6x+8,X=7 | | 4(f-15)=8 | | 60-m;m=5 | | x/4=18=5 | | -9-4x=-21-7x | | (2x-1)/4=(3X+5)/9 | | 13+4u=-17 | | 4b-25=3b-54 | | (2x-1)/4=(3X+5)/9= | | 4x-3(x-4)=17 | | 24x+6=8x+2 | | x2-10=30x | | 13u+4=-17 | | 33=-2x=7 |