2(x+7)-34=4x-11x(x-1)

Simple and best practice solution for 2(x+7)-34=4x-11x(x-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(x+7)-34=4x-11x(x-1) equation:



2(x+7)-34=4x-11x(x-1)
We move all terms to the left:
2(x+7)-34-(4x-11x(x-1))=0
We multiply parentheses
2x-(4x-11x(x-1))+14-34=0
We calculate terms in parentheses: -(4x-11x(x-1)), so:
4x-11x(x-1)
We multiply parentheses
-11x^2+4x+11x
We add all the numbers together, and all the variables
-11x^2+15x
Back to the equation:
-(-11x^2+15x)
We add all the numbers together, and all the variables
-(-11x^2+15x)+2x-20=0
We get rid of parentheses
11x^2-15x+2x-20=0
We add all the numbers together, and all the variables
11x^2-13x-20=0
a = 11; b = -13; c = -20;
Δ = b2-4ac
Δ = -132-4·11·(-20)
Δ = 1049
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-\sqrt{1049}}{2*11}=\frac{13-\sqrt{1049}}{22} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+\sqrt{1049}}{2*11}=\frac{13+\sqrt{1049}}{22} $

See similar equations:

| k/7+9=16 | | 4r+4r-16r-10r=19 | | 53x=83 | | 0=3h-3 | | 15=6y-15 | | -8=3w-23 | | 12=5b-3 | | -24-8x=12(-2/19) | | 228y=-24 | | 7+2x+5=7+19 | | 1/2(10x+7)=5x+6 | | -4n+4(1+5n)=-6(2n-14) | | 15=-10b+45 | | 7x-13=2x-4 | | 45+7u=16u | | -2b=520 | | 0=19-3.2*x | | 291=-y+82 | | 0=19-3.2x | | 12w=648 | | g+-24=-94 | | -p=84 | | 4x-2+72+3x+4=180 | | 0=12-3*x | | 4(x+3)-4=8x+10+4x | | 65=6i+8 | | 6+7x4-2=26 | | 68=9c+50 | | 9009=10b+9 | | 62=8t+6 | | 11b+10=120 | | 6f-1=11 |

Equations solver categories