If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2(x-1)+(1/2)(4x+6)=5
We move all terms to the left:
2(x-1)+(1/2)(4x+6)-(5)=0
Domain of the equation: 2)(4x+6)!=0We add all the numbers together, and all the variables
x∈R
2(x-1)+(+1/2)(4x+6)-5=0
We multiply parentheses
2x+(+1/2)(4x+6)-2-5=0
We multiply parentheses ..
(+4x^2+1/2*6)+2x-2-5=0
We multiply all the terms by the denominator
(+4x^2+1+2x*2*6)-2*2*6)-5*2*6)=0
We add all the numbers together, and all the variables
(+4x^2+1+2x*2*6)=0
We get rid of parentheses
4x^2+2x*2*6+1=0
Wy multiply elements
4x^2+24x*6+1=0
Wy multiply elements
4x^2+144x+1=0
a = 4; b = 144; c = +1;
Δ = b2-4ac
Δ = 1442-4·4·1
Δ = 20720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20720}=\sqrt{16*1295}=\sqrt{16}*\sqrt{1295}=4\sqrt{1295}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(144)-4\sqrt{1295}}{2*4}=\frac{-144-4\sqrt{1295}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(144)+4\sqrt{1295}}{2*4}=\frac{-144+4\sqrt{1295}}{8} $
| (X+2)(x-5)=(x+1)(x-3) | | 4(x-5)*2=36 | | 3(4x-2)=4(0.5x-3.5) | | 0.4x^2=100 | | -3(a+12)-9(12a-4)=111 | | 5n-3(n+6)=22 | | 0.4x^2-100=0 | | 7m+m-5=6m+1 | | 3(x+5)=−4x+8 | | 14x-(3x-8)=41 | | -8+3n-5n=-8-4n | | |3x+5|=1 | | 8x-3x+2=1 | | 4(x-7)+2x=6-3(2x+9) | | y+6/2=14 | | (x-1)^2=25 | | d=1/2.20(20-3) | | 10•x=4 | | 14=5/m | | 7k+16=k+40 | | 5r^2-36=10r | | x/3=x/7+10/3 | | 15x^2-5x-30=0 | | -8(12+6r)-9(1+3r)=45 | | w=17+1 | | X/9+y/6=1/3 | | 2a^2+15a-27=0 | | 3x=12=24 | | 2(x+3)=4x+10+2 | | 3x/2+9/14=22/7 | | 5.5x+5=120.5 | | -5(12-9n)-9(1-6n)=30 |