If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2(x-2)2+(x-4)(x+4)+11x=3x(x-1)-7
We move all terms to the left:
2(x-2)2+(x-4)(x+4)+11x-(3x(x-1)-7)=0
We add all the numbers together, and all the variables
11x+2(x-2)2+(x-4)(x+4)-(3x(x-1)-7)=0
We use the square of the difference formula
x^2+11x+2(x-2)2-(3x(x-1)-7)-16=0
We multiply parentheses
x^2+11x+4x-(3x(x-1)-7)-8-16=0
We calculate terms in parentheses: -(3x(x-1)-7), so:We add all the numbers together, and all the variables
3x(x-1)-7
We multiply parentheses
3x^2-3x-7
Back to the equation:
-(3x^2-3x-7)
x^2+15x-(3x^2-3x-7)-24=0
We get rid of parentheses
x^2-3x^2+15x+3x+7-24=0
We add all the numbers together, and all the variables
-2x^2+18x-17=0
a = -2; b = 18; c = -17;
Δ = b2-4ac
Δ = 182-4·(-2)·(-17)
Δ = 188
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{188}=\sqrt{4*47}=\sqrt{4}*\sqrt{47}=2\sqrt{47}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{47}}{2*-2}=\frac{-18-2\sqrt{47}}{-4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{47}}{2*-2}=\frac{-18+2\sqrt{47}}{-4} $
| 3x=3(-5+x)+15 | | x3-13x=107 | | 3(x-2)=3x+7 | | x/3+x/4+200=x | | y-0.8y=120 | | 4x=-5x-90 | | r+45=-55 | | 3x÷5-24x-5=2x+7 | | 13n-12n=18 | | 3x-25=120 | | 24a−3(2a−5)=51 | | 3x÷5-2÷9=6x÷5+4÷9 | | 2^x=7,46 | | 60=9x-21 | | 3.6y+5.4=19.8 | | (x+5)(x+5)=-49 | | 5.4=2.5k-4.6 | | 2(3x+4)=4(7x+3) | | 21.4+3m=-5.6 | | (3a+2)=(3a+5) | | 4x=(-5x-90) | | 1.3=2.54+0.8m | | 3.5m-7=-35 | | x²-4x+x(x-1)=3x²-8x+2 | | X(x+10)+(1+30)+2x=360 | | 4x-32=8x-16 | | X(x+10)+(1+30)+2x=260 | | a-52=90 | | 15x^2+3x=228x | | (10-y)*9=y*1.7 | | 8(3s+2)=328 | | 42=x=97 |