If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2(x-2)=(2/7)(x+4)
We move all terms to the left:
2(x-2)-((2/7)(x+4))=0
Domain of the equation: 7)(x+4))!=0We add all the numbers together, and all the variables
x∈R
2(x-2)-((+2/7)(x+4))=0
We multiply parentheses
2x-((+2/7)(x+4))-4=0
We multiply parentheses ..
-((+2x^2+2/7*4))+2x-4=0
We multiply all the terms by the denominator
-((+2x^2+2+2x*7*4))-4*7*4))=0
We calculate terms in parentheses: -((+2x^2+2+2x*7*4)), so:We add all the numbers together, and all the variables
(+2x^2+2+2x*7*4)
We get rid of parentheses
2x^2+2x*7*4+2
Wy multiply elements
2x^2+56x*4+2
Wy multiply elements
2x^2+224x+2
Back to the equation:
-(2x^2+224x+2)
-(2x^2+224x+2)=0
We get rid of parentheses
-2x^2-224x-2=0
a = -2; b = -224; c = -2;
Δ = b2-4ac
Δ = -2242-4·(-2)·(-2)
Δ = 50160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{50160}=\sqrt{16*3135}=\sqrt{16}*\sqrt{3135}=4\sqrt{3135}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-224)-4\sqrt{3135}}{2*-2}=\frac{224-4\sqrt{3135}}{-4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-224)+4\sqrt{3135}}{2*-2}=\frac{224+4\sqrt{3135}}{-4} $
| 1=1=+8n+5n | | 180=11x-47+6x+2 | | 2q-8=-2q | | 0.06x+0.04x(x+7000)=680 | | 26-x=40-3x | | -2x(4x-2)-2x=54 | | 17-×=-3x+7 | | 3(x-3)=3(x−3)= | | 3x+17=2x-15 | | -6x-15=3 | | 16−3p=32 | | 2(4x-12)=24 | | 7-(9x-15)=-14-x-12 | | 2/4-3x=5 | | 1b+1+2=18 | | 6-6s=-5s | | |4x-8|=-12 | | x-5-1=-6 | | 231=7(1+8a) | | 40z+40=40z+20 | | 7x+17=2x-58 | | 7s+8=57 | | -9p=-10p+2 | | 216=(1/26)^x-1 | | -26=-7(2-2x)+6(-3x+2) | | 2=5+n/4 | | 2x+4=7. | | 9(u+2)=5u+14 | | .5x+10=3.5x | | c-11=-7 | | 3/5x+9=27 | | 9w=7+8w |