If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2(x-3)-3(x-2)=x+2-x(x-6)
We move all terms to the left:
2(x-3)-3(x-2)-(x+2-x(x-6))=0
We multiply parentheses
2x-3x-(x+2-x(x-6))-6+6=0
We calculate terms in parentheses: -(x+2-x(x-6)), so:We add all the numbers together, and all the variables
x+2-x(x-6)
determiningTheFunctionDomain x-x(x-6)+2
We multiply parentheses
-x^2+x+6x+2
We add all the numbers together, and all the variables
-1x^2+7x+2
Back to the equation:
-(-1x^2+7x+2)
-(-1x^2+7x+2)-1x=0
We get rid of parentheses
1x^2-7x-1x-2=0
We add all the numbers together, and all the variables
x^2-8x-2=0
a = 1; b = -8; c = -2;
Δ = b2-4ac
Δ = -82-4·1·(-2)
Δ = 72
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{72}=\sqrt{36*2}=\sqrt{36}*\sqrt{2}=6\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-6\sqrt{2}}{2*1}=\frac{8-6\sqrt{2}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+6\sqrt{2}}{2*1}=\frac{8+6\sqrt{2}}{2} $
| x-4=-10.1 | | -5(y+2)=-7y-16 | | w/29=11 | | -7w+45=-3(w-3) | | 7(x-9)=-5x-39 | | 7(x-9)=-5x-35 | | 2(x+24)=3x+8 | | 1(2x-10)+9x=-7 | | 8p+3=3p | | 4-0.025x=0.1-0.5x | | (2/5)*2/5t=(2/5)4 | | 5/x-4/5x=58 | | u/3+6=12 | | r/(-12)=17 | | -23=5u-8 | | 3x+(x+20)+32=180 | | -28=-7+3u | | w-(-125)=931 | | n-6=21= | | 1/2x-5+2/3x=7/6x+7 | | 3/x=15/x=4 | | 6/x=104/15 | | 29t=86.5-17.5 | | -(2x=1) | | 2(5y+7)=-126 | | x5+3=-35 | | (2/5)t-3=1 | | 8=f/8 | | 2(x=7) | | 6s-4=8(2+(1/4)s) | | -2(x=7) | | 2/3t-÷=1 |