2(x-3)-5=4x(x-5)

Simple and best practice solution for 2(x-3)-5=4x(x-5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(x-3)-5=4x(x-5) equation:



2(x-3)-5=4x(x-5)
We move all terms to the left:
2(x-3)-5-(4x(x-5))=0
We multiply parentheses
2x-(4x(x-5))-6-5=0
We calculate terms in parentheses: -(4x(x-5)), so:
4x(x-5)
We multiply parentheses
4x^2-20x
Back to the equation:
-(4x^2-20x)
We add all the numbers together, and all the variables
2x-(4x^2-20x)-11=0
We get rid of parentheses
-4x^2+2x+20x-11=0
We add all the numbers together, and all the variables
-4x^2+22x-11=0
a = -4; b = 22; c = -11;
Δ = b2-4ac
Δ = 222-4·(-4)·(-11)
Δ = 308
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{308}=\sqrt{4*77}=\sqrt{4}*\sqrt{77}=2\sqrt{77}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-2\sqrt{77}}{2*-4}=\frac{-22-2\sqrt{77}}{-8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+2\sqrt{77}}{2*-4}=\frac{-22+2\sqrt{77}}{-8} $

See similar equations:

| -2v-24=2+3(6-8v) | | 44d+.06=35d+.09 | | -2x-(-3)=-2x-1 | | 6x+7+x=56 | | -38+6x=-2(1-6x) | | +6=5(x−4) | | 44d+6=35d+9 | | -38+6x=-2(1=6x) | | 5k-1+-9=5k | | 49+k/9=56 | | 9y=387 | | 8^x+1=35 | | 3x-4(8+4x)=-110 | | 2.4x=3 | | 7=s/8 | | 12x^2+7=30 | | .00041x=4.1 | | X^2+3x-22=x^2-1x-12 | | 9x+17=8x-64+x | | 6x^2-3x=9x | | .079x=7.9 | | -(9x+3)=15 | | -1/2(4x-6)=1/4(-8x-4) | | 4(a+3=16 | | 3(1-4x)=3(2x+5) | | -3+7x=-1/5 | | 5x-3(4x-3)=3(3x-4) | | 15x-13=-12 | | 3x^2+20=5 | | 27+8x=65 | | 2(2-3a)(a+1)=0 | | 5x-75=x+82 |

Equations solver categories