2(x-4)1(2x+4)=6(3x+3)

Simple and best practice solution for 2(x-4)1(2x+4)=6(3x+3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(x-4)1(2x+4)=6(3x+3) equation:


Simplifying
2(x + -4) * 1(2x + 4) = 6(3x + 3)

Reorder the terms:
2(-4 + x) * 1(2x + 4) = 6(3x + 3)

Reorder the terms:
2(-4 + x) * 1(4 + 2x) = 6(3x + 3)

Reorder the terms for easier multiplication:
2 * 1(-4 + x)(4 + 2x) = 6(3x + 3)

Multiply 2 * 1
2(-4 + x)(4 + 2x) = 6(3x + 3)

Multiply (-4 + x) * (4 + 2x)
2(-4(4 + 2x) + x(4 + 2x)) = 6(3x + 3)
2((4 * -4 + 2x * -4) + x(4 + 2x)) = 6(3x + 3)
2((-16 + -8x) + x(4 + 2x)) = 6(3x + 3)
2(-16 + -8x + (4 * x + 2x * x)) = 6(3x + 3)
2(-16 + -8x + (4x + 2x2)) = 6(3x + 3)

Combine like terms: -8x + 4x = -4x
2(-16 + -4x + 2x2) = 6(3x + 3)
(-16 * 2 + -4x * 2 + 2x2 * 2) = 6(3x + 3)
(-32 + -8x + 4x2) = 6(3x + 3)

Reorder the terms:
-32 + -8x + 4x2 = 6(3 + 3x)
-32 + -8x + 4x2 = (3 * 6 + 3x * 6)
-32 + -8x + 4x2 = (18 + 18x)

Solving
-32 + -8x + 4x2 = 18 + 18x

Solving for variable 'x'.

Reorder the terms:
-32 + -18 + -8x + -18x + 4x2 = 18 + 18x + -18 + -18x

Combine like terms: -32 + -18 = -50
-50 + -8x + -18x + 4x2 = 18 + 18x + -18 + -18x

Combine like terms: -8x + -18x = -26x
-50 + -26x + 4x2 = 18 + 18x + -18 + -18x

Reorder the terms:
-50 + -26x + 4x2 = 18 + -18 + 18x + -18x

Combine like terms: 18 + -18 = 0
-50 + -26x + 4x2 = 0 + 18x + -18x
-50 + -26x + 4x2 = 18x + -18x

Combine like terms: 18x + -18x = 0
-50 + -26x + 4x2 = 0

Factor out the Greatest Common Factor (GCF), '2'.
2(-25 + -13x + 2x2) = 0

Ignore the factor 2.

Subproblem 1

Set the factor '(-25 + -13x + 2x2)' equal to zero and attempt to solve: Simplifying -25 + -13x + 2x2 = 0 Solving -25 + -13x + 2x2 = 0 Begin completing the square. Divide all terms by 2 the coefficient of the squared term: Divide each side by '2'. -12.5 + -6.5x + x2 = 0 Move the constant term to the right: Add '12.5' to each side of the equation. -12.5 + -6.5x + 12.5 + x2 = 0 + 12.5 Reorder the terms: -12.5 + 12.5 + -6.5x + x2 = 0 + 12.5 Combine like terms: -12.5 + 12.5 = 0.0 0.0 + -6.5x + x2 = 0 + 12.5 -6.5x + x2 = 0 + 12.5 Combine like terms: 0 + 12.5 = 12.5 -6.5x + x2 = 12.5 The x term is -6.5x. Take half its coefficient (-3.25). Square it (10.5625) and add it to both sides. Add '10.5625' to each side of the equation. -6.5x + 10.5625 + x2 = 12.5 + 10.5625 Reorder the terms: 10.5625 + -6.5x + x2 = 12.5 + 10.5625 Combine like terms: 12.5 + 10.5625 = 23.0625 10.5625 + -6.5x + x2 = 23.0625 Factor a perfect square on the left side: (x + -3.25)(x + -3.25) = 23.0625 Calculate the square root of the right side: 4.802343178 Break this problem into two subproblems by setting (x + -3.25) equal to 4.802343178 and -4.802343178.

Subproblem 1

x + -3.25 = 4.802343178 Simplifying x + -3.25 = 4.802343178 Reorder the terms: -3.25 + x = 4.802343178 Solving -3.25 + x = 4.802343178 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '3.25' to each side of the equation. -3.25 + 3.25 + x = 4.802343178 + 3.25 Combine like terms: -3.25 + 3.25 = 0.00 0.00 + x = 4.802343178 + 3.25 x = 4.802343178 + 3.25 Combine like terms: 4.802343178 + 3.25 = 8.052343178 x = 8.052343178 Simplifying x = 8.052343178

Subproblem 2

x + -3.25 = -4.802343178 Simplifying x + -3.25 = -4.802343178 Reorder the terms: -3.25 + x = -4.802343178 Solving -3.25 + x = -4.802343178 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '3.25' to each side of the equation. -3.25 + 3.25 + x = -4.802343178 + 3.25 Combine like terms: -3.25 + 3.25 = 0.00 0.00 + x = -4.802343178 + 3.25 x = -4.802343178 + 3.25 Combine like terms: -4.802343178 + 3.25 = -1.552343178 x = -1.552343178 Simplifying x = -1.552343178

Solution

The solution to the problem is based on the solutions from the subproblems. x = {8.052343178, -1.552343178}

Solution

x = {8.052343178, -1.552343178}

See similar equations:

| 10p+0.15=14.50 | | -4z+5=18 | | 7z-9=13 | | 10x-20-6x=35+5 | | (v^4/-2u^3)^5 | | 4a-5a+3a= | | x=2(9/7)-1 | | x^2+y^2+2xy-25=0 | | n^2+4n+7=0 | | 5x-6=18/x-3 | | 3(0.6+0.2y)-8y=24 | | m/8=10 | | 18/7-1 | | -27u^3+64=0 | | 2(3y^2-x^2)=0 | | 25n=20n+15 | | P+45=168 | | 24=4+2y | | -2m(5m+4)= | | 11.54=-log(x) | | -2m(5m+r)= | | 9x+12-7x+17=-2 | | 0.5+0.66p+6=4p-1-0.8333333333333333333333p | | 2(9/7) | | -38=4y-2 | | 0.5+0.66p+6=4p-1-0.8333p | | 4w^2-2-w=0 | | (4r-4)(5r+6)= | | 6r^3+7r^3= | | 99+3y=-8y | | -23=9y-5 | | G(t)=(t^2+1)-20.25 |

Equations solver categories