2(x-4)=3/5x+6

Simple and best practice solution for 2(x-4)=3/5x+6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(x-4)=3/5x+6 equation:



2(x-4)=3/5x+6
We move all terms to the left:
2(x-4)-(3/5x+6)=0
Domain of the equation: 5x+6)!=0
x∈R
We multiply parentheses
2x-(3/5x+6)-8=0
We get rid of parentheses
2x-3/5x-6-8=0
We multiply all the terms by the denominator
2x*5x-6*5x-8*5x-3=0
Wy multiply elements
10x^2-30x-40x-3=0
We add all the numbers together, and all the variables
10x^2-70x-3=0
a = 10; b = -70; c = -3;
Δ = b2-4ac
Δ = -702-4·10·(-3)
Δ = 5020
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5020}=\sqrt{4*1255}=\sqrt{4}*\sqrt{1255}=2\sqrt{1255}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-70)-2\sqrt{1255}}{2*10}=\frac{70-2\sqrt{1255}}{20} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-70)+2\sqrt{1255}}{2*10}=\frac{70+2\sqrt{1255}}{20} $

See similar equations:

| 4x-50=2x-5 | | 3g+18g−–17=–4 | | -4(8x+5)=-32x-26 | | 4-2(-2x-5)=10 | | 39+v–38+v–47=180 | | -6=-2n+4/3 | | 9x-3=-3+21 | | 37x+4=38x+1 | | -8x+20=2x-15 | | z+(2.4z+10)=180 | | 2=6x+4x | | 5w+2.4=7.9 | | 37+4=38x+1 | | 5-5x=5/2x+16 | | y.25=y-12 | | -2h+-19h+-20=1 | | -18+3s=15 | | 10-4p=-8-p | | 7(x-2)=7×+14 | | 39°+v–38°+v–47°=180 | | -5+2y=16 | | –4m+7=–3mm= | | 5(x+1)=5x+15x+5=5x+15x−5x+5=5x−5x+15=1 | | 1/x+4=9/2 | | 10+5z=10z | | 5+10x=22x | | -3(x-9)=2x+32 | | 7+4(x+3)=39 | | -14=-6-y | | 7h-3h=16 | | 2p+4p-3=2p=1 | | 3(2x+4)+4x=32 |

Equations solver categories