2(x-5)-2/x-1=x-1

Simple and best practice solution for 2(x-5)-2/x-1=x-1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(x-5)-2/x-1=x-1 equation:



2(x-5)-2/x-1=x-1
We move all terms to the left:
2(x-5)-2/x-1-(x-1)=0
Domain of the equation: x!=0
x∈R
We multiply parentheses
2x-2/x-(x-1)-10-1=0
We get rid of parentheses
2x-2/x-x+1-10-1=0
We multiply all the terms by the denominator
2x*x-x*x+1*x-10*x-1*x-2=0
We add all the numbers together, and all the variables
-10x+2x*x-x*x-2=0
Wy multiply elements
2x^2-1x^2-10x-2=0
We add all the numbers together, and all the variables
x^2-10x-2=0
a = 1; b = -10; c = -2;
Δ = b2-4ac
Δ = -102-4·1·(-2)
Δ = 108
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{108}=\sqrt{36*3}=\sqrt{36}*\sqrt{3}=6\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-6\sqrt{3}}{2*1}=\frac{10-6\sqrt{3}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+6\sqrt{3}}{2*1}=\frac{10+6\sqrt{3}}{2} $

See similar equations:

| 8(14+2x)=(-34) | | 3y4=32 | | 5+y/2=4.5 | | 13-3.4=17.6+10x | | t2+2t=0 | | 65+90+25=2x+3x+65 | | (6x-9)+(2x+6)=90 | | (2x)-30=x+28 | | (6x-9)+(2x+6)=180 | | 2|3x-5|=4 | | x=0.40x+150,000+80,000 | | 3(6x+12)+4x=20 | | 3(6x12)+4x=20 | | 26÷x=13 | | 6x-8=12x+40 | | x+.15x=20 | | +3x=-2 | | 6x-8=2x+40 | | 2/5x-2=-6 | | m+17=62 | | 0-6=-2f+3(3f-2) | | 2(3x-7)=4(3x+2) | | 100/x*500=50 | | f-6=-2f+3(3f-2) | | f-6=-2f | | -0.333r+3=5 | | 40/100=28/x | | 1.25t+1=-9 | | 5(x+7)-8x=23 | | -42=-2-8d | | (9x-23)=(4x+42) | | 5+11=14y-4 |

Equations solver categories