If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2(x-6)-4x=-4x(x-3)-8
We move all terms to the left:
2(x-6)-4x-(-4x(x-3)-8)=0
We add all the numbers together, and all the variables
-4x+2(x-6)-(-4x(x-3)-8)=0
We multiply parentheses
-4x+2x-(-4x(x-3)-8)-12=0
We calculate terms in parentheses: -(-4x(x-3)-8), so:We add all the numbers together, and all the variables
-4x(x-3)-8
We multiply parentheses
-4x^2+12x-8
Back to the equation:
-(-4x^2+12x-8)
-(-4x^2+12x-8)-2x-12=0
We get rid of parentheses
4x^2-12x-2x+8-12=0
We add all the numbers together, and all the variables
4x^2-14x-4=0
a = 4; b = -14; c = -4;
Δ = b2-4ac
Δ = -142-4·4·(-4)
Δ = 260
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{260}=\sqrt{4*65}=\sqrt{4}*\sqrt{65}=2\sqrt{65}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{65}}{2*4}=\frac{14-2\sqrt{65}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{65}}{2*4}=\frac{14+2\sqrt{65}}{8} $
| 2+8*e^(4 | | 3(2y-1)=¥ | | -0,2x=0,6 | | 63=3b+6 | | 14,000(1+2r)=12000(1+4r) | | 4+10/n=-6 | | 62=-9k-10 | | 52=(2x+4) | | P/3+(3/4)P=(9/2(p-1)) | | 0,25x=0.75 | | 2x-1+3x=73 | | 5x10⁴x=4.5x10⁴+5000x | | 5*10⁴x=4.5*10⁴+5000x | | X/10x=2/5x | | 25/x=2x/8 | | 3.5x-5/2x+x=9/2 | | X-(6x-1)=5x+2 | | 40=82n-3 | | -4x+9=x-1/2 | | 9x/2+2=8 | | 10x-30=2x-7 | | 5(-x+2)=14 | | n2=-5.4 | | 12-4x+12x+15=-45 | | d(2)=122-2 | | -8x-1=x-1/4 | | -2(-3x+0,3)=5.4 | | 2-5=x/1.2 | | 2a*2a*2a*2a*2a=4a | | 2a*2a=3 | | 10x-15-3x+6=0 | | x6+3=4 |