2(x-6)=3x(x+6)

Simple and best practice solution for 2(x-6)=3x(x+6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(x-6)=3x(x+6) equation:



2(x-6)=3x(x+6)
We move all terms to the left:
2(x-6)-(3x(x+6))=0
We multiply parentheses
2x-(3x(x+6))-12=0
We calculate terms in parentheses: -(3x(x+6)), so:
3x(x+6)
We multiply parentheses
3x^2+18x
Back to the equation:
-(3x^2+18x)
We get rid of parentheses
-3x^2+2x-18x-12=0
We add all the numbers together, and all the variables
-3x^2-16x-12=0
a = -3; b = -16; c = -12;
Δ = b2-4ac
Δ = -162-4·(-3)·(-12)
Δ = 112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{112}=\sqrt{16*7}=\sqrt{16}*\sqrt{7}=4\sqrt{7}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-4\sqrt{7}}{2*-3}=\frac{16-4\sqrt{7}}{-6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+4\sqrt{7}}{2*-3}=\frac{16+4\sqrt{7}}{-6} $

See similar equations:

| (8+h)/10=1 | | -0.5x+12=2x+27 | | 20+x=6 | | 5u/7=10 | | 7.7x+2025=59.29+45x | | 1/2(2x+6)=2x+13 | | 2x^-3x=25 | | 0.69x+35=1.19 | | 0.69x+42 = 1.39x | | 14y-43=4y=65 | | 5(x+3)-4x+7=-5 | | 5x-10=3x+11-x | | 2u+2=-4 | | p+4–2=(p–10)0 | | 3(p+6)=24 | | y=30-4*6 | | y=30-4*3 | | y=30-4*2 | | w+30=180 | | 23=3x-637 | | y=30-4*1 | | -10.6=-3.1+w/3 | | 7(2e=1)-3=6+6e | | 13=4g-(-5) | | 2y-28=-2(y+6) | | 3p-(-1)=10 | | 3n=2(1-4n) | | -28+7w=−28+7w=7 | | -5/7=-1/2v-4/3 | | 1/2(4-14y)=y+50 | | 40x=2800 | | x=(9-2)*180 |

Equations solver categories