2(y-3)-5y=-3y(y+3)

Simple and best practice solution for 2(y-3)-5y=-3y(y+3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(y-3)-5y=-3y(y+3) equation:



2(y-3)-5y=-3y(y+3)
We move all terms to the left:
2(y-3)-5y-(-3y(y+3))=0
We add all the numbers together, and all the variables
-5y+2(y-3)-(-3y(y+3))=0
We multiply parentheses
-5y+2y-(-3y(y+3))-6=0
We calculate terms in parentheses: -(-3y(y+3)), so:
-3y(y+3)
We multiply parentheses
-3y^2-9y
Back to the equation:
-(-3y^2-9y)
We add all the numbers together, and all the variables
-(-3y^2-9y)-3y-6=0
We get rid of parentheses
3y^2+9y-3y-6=0
We add all the numbers together, and all the variables
3y^2+6y-6=0
a = 3; b = 6; c = -6;
Δ = b2-4ac
Δ = 62-4·3·(-6)
Δ = 108
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{108}=\sqrt{36*3}=\sqrt{36}*\sqrt{3}=6\sqrt{3}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{3}}{2*3}=\frac{-6-6\sqrt{3}}{6} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{3}}{2*3}=\frac{-6+6\sqrt{3}}{6} $

See similar equations:

| 2r^+3=67 | | -2x+4=-12x-6 | | (n+2)/5=14 | | 3=-8p-5 | | 5x-10+7x-2=4x | | 3^3b=3^b+672 | | 8x-4000=3x-5750 | | 14-3x=18-2x | | 3a+7a= | | C=0.15m+45 | | -u/5=52 | | 3(b-4)=5b-2=b | | g2+ 16=19 | | 5p+2=6-7p | | (x-25)=(6x-5) | | x2+50x+625=0 | | 2x-30-2x+10=90 | | 18+17x=22+13x | | 8p+6=75 | | 3x/24=6/3x | | 5a=(a–6) | | 2^7x*8=256 | | 4000-8x=5750-3x | | 7x-3x-36=0 | | 2t÷5=10 | | F(x)=340-17x | | 5=4​x​-19 | | 9(t+2)=3 | | 2=1.03^t | | -6+26=4y-7y | | 200=5x^2-25 | | x^-4=30 |

Equations solver categories