2(y2+1/y2)-6(y+1/y)=4

Simple and best practice solution for 2(y2+1/y2)-6(y+1/y)=4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(y2+1/y2)-6(y+1/y)=4 equation:



2(y2+1/y2)-6(y+1/y)=4
We move all terms to the left:
2(y2+1/y2)-6(y+1/y)-(4)=0
Domain of the equation: y2)!=0
y!=0/1
y!=0
y∈R
Domain of the equation: y)!=0
y!=0/1
y!=0
y∈R
We add all the numbers together, and all the variables
2(+y^2+1/y2)-6(+y+1/y)-4=0
We multiply parentheses
2y^2+2y-6y-6y-4=0
We add all the numbers together, and all the variables
2y^2-10y-4=0
a = 2; b = -10; c = -4;
Δ = b2-4ac
Δ = -102-4·2·(-4)
Δ = 132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{132}=\sqrt{4*33}=\sqrt{4}*\sqrt{33}=2\sqrt{33}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{33}}{2*2}=\frac{10-2\sqrt{33}}{4} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{33}}{2*2}=\frac{10+2\sqrt{33}}{4} $

See similar equations:

| 3y-40=8 | | 18b=918 | | 2^(5x-1)+16=2^5x | | 582=6y | | -3x-6=72 | | 13p=494 | | 27-(m+4)=3(6m-4);m=2 | | 32=1.50x+20 | | -4(z-120=42 | | u6=4 | | 3x/5-4/15=2x-1/3 | | 3=s9 | | 16x-13=9x+4 | | 18×-3y=15(y=6×-5) | | f÷4-5=9 | | 5+2x/5=1 | | 3x+4x2=2x | | 7-3=2x+7-5x | | 3(y+3)y+1+2=3(y+1)y+1 | | 40+-20+x=180 | | 9−5r=–9−7r | | (3x)/4+2=(4x)-1 | | f(1/2)=1/1/2 | | 1/11f+7=8 | | 1/5a-3=-5 | | 4+5p(-1)=34 | | y+.10y=125950 | | -4(4+9v)=-4(9+9v)+20 | | 13=-16t^2+56t. | | 1/2w-5=-9 | | 1/2x+2/3x=2 | | 3n,n=7 |

Equations solver categories