2(y2-15)=y(y+10)

Simple and best practice solution for 2(y2-15)=y(y+10) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(y2-15)=y(y+10) equation:



2(y2-15)=y(y+10)
We move all terms to the left:
2(y2-15)-(y(y+10))=0
We add all the numbers together, and all the variables
2(+y^2-15)-(y(y+10))=0
We multiply parentheses
2y^2-(y(y+10))-30=0
We calculate terms in parentheses: -(y(y+10)), so:
y(y+10)
We multiply parentheses
y^2+10y
Back to the equation:
-(y^2+10y)
We get rid of parentheses
2y^2-y^2-10y-30=0
We add all the numbers together, and all the variables
y^2-10y-30=0
a = 1; b = -10; c = -30;
Δ = b2-4ac
Δ = -102-4·1·(-30)
Δ = 220
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{220}=\sqrt{4*55}=\sqrt{4}*\sqrt{55}=2\sqrt{55}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{55}}{2*1}=\frac{10-2\sqrt{55}}{2} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{55}}{2*1}=\frac{10+2\sqrt{55}}{2} $

See similar equations:

| 18=13^x | | 7^3x+449^2x+1=0 | | 1.00x+68=85 | | 2x+4(x-2)=4x+8 | | 194=64-w | | 18x+9=20x-5 | | 4.7r+5/3=9.2 | | 68/1x=85 | | 2r=5r+3 | | 12x2+10x+2=0 | | 16x=1/5 | | -12p+1=-13p+2 | | 36^7x+1=216^3x-2 | | 85/x=68 | | 285=204-u | | 2(4x+2)=7-x | | 68/x=85 | | 402=2s | | 8x-9=10x+13 | | 11=17y/5 | | 32=-4+y | | 8x=10x+22 | | b-5=31 | | 1x-85=68 | | y²+144=0 | | 1x/85=68 | | 2(-2x+1)=-7x-13 | | 14(v+1)=14 | | 3-2(c-4)=7 | | 6x+33=81 | | -4n+7=n-3 | | 6x+8=7-5x |

Equations solver categories