2*n(n-1)/2=132

Simple and best practice solution for 2*n(n-1)/2=132 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2*n(n-1)/2=132 equation:



2n(n-1)/2=132
We move all terms to the left:
2n(n-1)/2-(132)=0
We multiply all the terms by the denominator
2n(n-1)-132*2=0
We add all the numbers together, and all the variables
2n(n-1)-264=0
We multiply parentheses
2n^2-2n-264=0
a = 2; b = -2; c = -264;
Δ = b2-4ac
Δ = -22-4·2·(-264)
Δ = 2116
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{2116}=46$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-46}{2*2}=\frac{-44}{4} =-11 $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+46}{2*2}=\frac{48}{4} =12 $

See similar equations:

| -10+2s=8 | | (u+4*8=40 | | X-1/3=3x+1/12 | | 2x+19=4x-9 | | 5x-16/7=38 | | 2x+x+1.5x+45=180 | | (Q-3)x3=6 | | 2x+x+(3/2)x+45=180 | | X=-6x+14 | | (x+5)(-1/9)=6 | | 0=y+-16+-2y | | 2x+x+3/2x+45=180 | | 104-8x=7x+16 | | 9(x-2)=11x-18-2x | | -3x3+4=6x6-5 | | 174-6x=5x=9 | | 4x÷3=8 | | 4k=7(-4-2k)=-2(k-2) | | 5n^2+7n-24=0 | | 3(3x-4)(2x=1) | | 3x-3=3x-83 | | 6^x+3=8 | | 1=20x+5;2=24x-1 | | 3(-4)(-4)+k(3)(3)=24 | | 4x+2=x—7 | | 6x-2x-4=46 | | r2-12r+41=0 | | 5x2–80=0 | | 8+6x=8+8x=+7+3 | | 3x^2-4x-47=0 | | (2x-6)/20=39/(x+6) | | 17/8=x/11 |

Equations solver categories