2+(3x*3)2x-31=2

Simple and best practice solution for 2+(3x*3)2x-31=2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2+(3x*3)2x-31=2 equation:



2+(3x*3)2x-31=2
We move all terms to the left:
2+(3x*3)2x-31-(2)=0
We add all the numbers together, and all the variables
(+3x*3)2x+2-31-2=0
We add all the numbers together, and all the variables
(+3x*3)2x-31=0
We multiply parentheses
18x^2-31=0
a = 18; b = 0; c = -31;
Δ = b2-4ac
Δ = 02-4·18·(-31)
Δ = 2232
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2232}=\sqrt{36*62}=\sqrt{36}*\sqrt{62}=6\sqrt{62}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{62}}{2*18}=\frac{0-6\sqrt{62}}{36} =-\frac{6\sqrt{62}}{36} =-\frac{\sqrt{62}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{62}}{2*18}=\frac{0+6\sqrt{62}}{36} =\frac{6\sqrt{62}}{36} =\frac{\sqrt{62}}{6} $

See similar equations:

| x+x+31=90 | | 164=4x+30 | | 4x-16=3x-2=2x-4 | | x/8=3.12 | | 134=4x | | 2x-4=3x-2=4x-16 | | -3Y=18x-20/3X | | v/31.25=5 | | B÷16=(b-6)÷4 | | n^2-3n=12 | | n^2-3n=48 | | x=4/x=15/x+4 | | 5x+5+2x=100-2x | | 0.5x+(-1.5)=1.5x+(5) | | +2-5x=17 | | 5x+5-2x=100-2x | | 5x-3x-3=29 | | 6x2−13x+3=−3 | | 4x+24-3x=25 | | 48=6+2w | | 1x+(3)=1.5x+(-7) | | 184=6x-8 | | 18−5x=−42 | | 2x+10-12=4 | | 11/4+3/4r=163/24 | | 8x+(-3)=2x+(0) | | 3/2(v+3/2)=-7/4v-19/16 | | 4χ²+3x-10=0 | | 0x+(8)=2x+(0) | | 3/8(t)=13 | | 510=x-7 | | 1.5x+(-4)=0.5x+(4) |

Equations solver categories