2+-3/4k=1/8k+9

Simple and best practice solution for 2+-3/4k=1/8k+9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2+-3/4k=1/8k+9 equation:



2+-3/4k=1/8k+9
We move all terms to the left:
2+-3/4k-(1/8k+9)=0
Domain of the equation: 4k!=0
k!=0/4
k!=0
k∈R
Domain of the equation: 8k+9)!=0
k∈R
We add all the numbers together, and all the variables
-3/4k-(1/8k+9)=0
We get rid of parentheses
-3/4k-1/8k-9=0
We calculate fractions
(-24k)/32k^2+(-4k)/32k^2-9=0
We multiply all the terms by the denominator
(-24k)+(-4k)-9*32k^2=0
Wy multiply elements
-288k^2+(-24k)+(-4k)=0
We get rid of parentheses
-288k^2-24k-4k=0
We add all the numbers together, and all the variables
-288k^2-28k=0
a = -288; b = -28; c = 0;
Δ = b2-4ac
Δ = -282-4·(-288)·0
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{784}=28$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-28)-28}{2*-288}=\frac{0}{-576} =0 $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-28)+28}{2*-288}=\frac{56}{-576} =-7/72 $

See similar equations:

| (3y-20)+y=180 | | -4x+17=31 | | -2/5x+8=6x-184/5 | | -4(2x+3)=-8x+-12-2(3x+1)=-6x+-2 | | 3 = s/3– 1 | | 3=s3/– 1 | | 9x+210°=4x+140° | | F(x)=x2-5x+1 | | 4k+16/7=1/5 | | 78-2x=92-3x | | W=235+-2.5t | | 1/2(t-7)=32 | | -11+b/8=-98 | | (4x)^-2=100 | | 5+6(35-5)=-3+2(8s-1) | | -x+1=-5x-17 | | 12.24=3.7w-7 | | 13+6b=17 | | 2x-(40+x)=90 | | 14(8x+5)=-25(x-5) | | 15x=280-(40+x) | | 5y-10-7y=-32 | | 2/3=18/9x-11 | | 3c+13=55 | | 1/2x+3/4x=15 | | x^2+6x=-28 | | 6y+-9y=3 | | 7(-2x+9)=-8(x-3) | | -3(4y-3)+12y=9 | | 5c=100-1c | | x*5=x+60 | | 6-(3x)=x+6 |

Equations solver categories