If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2+1/2x+2/3x=1+5/6
We move all terms to the left:
2+1/2x+2/3x-(1+5/6)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 3x!=0We add all the numbers together, and all the variables
x!=0/3
x!=0
x∈R
1/2x+2/3x+2-(5/6+1)=0
We get rid of parentheses
1/2x+2/3x+2-1-5/6=0
We calculate fractions
(-90x^2)/216x^2+108x/216x^2+144x/216x^2+2-1=0
We add all the numbers together, and all the variables
(-90x^2)/216x^2+108x/216x^2+144x/216x^2+1=0
We multiply all the terms by the denominator
(-90x^2)+108x+144x+1*216x^2=0
We add all the numbers together, and all the variables
(-90x^2)+252x+1*216x^2=0
Wy multiply elements
(-90x^2)+216x^2+252x=0
We get rid of parentheses
-90x^2+216x^2+252x=0
We add all the numbers together, and all the variables
126x^2+252x=0
a = 126; b = 252; c = 0;
Δ = b2-4ac
Δ = 2522-4·126·0
Δ = 63504
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{63504}=252$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(252)-252}{2*126}=\frac{-504}{252} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(252)+252}{2*126}=\frac{0}{252} =0 $
| 6d+8=10d+12 | | 15x-32+9x+68=180 | | 8x-2=3x+33 | | 850=40x+15x | | 16x+11=3x+50 | | 21/2x+2/3x=15/6 | | 12x-179=-x+162 | | 4x-27=12+x | | f(3)=5(3)-5 | | -1-15=n | | 2|x-1|=10 | | f(-2)=5(-2)-5 | | 3(5x+3)-7=7 | | -2=-2(a+2) | | 3/4x+4/5=3/10 | | -2.4=w/3+2.4 | | 3(x+5)=1+5(x-6) | | 2x^2-6x-2=4x-3 | | p/2+1=3 | | 9(x+10)+2=-8(x-2)-6 | | 12(t-4)+6t=6(3t+3)-10 | | f(-5)=5(-5)-5 | | 13+t/11=7 | | 1/5=2/3x | | -2(x-3)+5x=-9 | | -15(x-3)=60 | | -12=b+4+7b | | -8=k20 | | 9(3–2x)=2(10–8x) | | 5x=2/7 | | 1/2n+12=22 | | -113=7(1+4x)-8x |