2+3z-2=4z-3(z+1)32

Simple and best practice solution for 2+3z-2=4z-3(z+1)32 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2+3z-2=4z-3(z+1)32 equation:



2+3z-2=4z-3(z+1)32
We move all terms to the left:
2+3z-2-(4z-3(z+1)32)=0
We add all the numbers together, and all the variables
3z-(4z-3(z+1)32)=0
We calculate terms in parentheses: -(4z-3(z+1)32), so:
4z-3(z+1)32
We multiply parentheses
4z-96z-96
We add all the numbers together, and all the variables
-92z-96
Back to the equation:
-(-92z-96)
We get rid of parentheses
3z+92z+96=0
We add all the numbers together, and all the variables
95z+96=0
We move all terms containing z to the left, all other terms to the right
95z=-96
z=-96/95
z=-1+1/95

See similar equations:

| 2+3z-2=4z-3(z+1)…32 | | 400=0.10x^2 | | 2(2y+6)=20 | | (3x+25)(5x+5)=x | | 3x+25+5x+5=x | | 4(5x=1)-8=156 | | 3y-4+2y+8=360 | | 3y-4+2y+8=369 | | 28-4(x-4)=52 | | 52=28-4(x-4) | | 2x-x=15+15 | | x+8.66=4×1.73 | | x+8,66=-4×1,73 | | (3n-4)=(n+6) | | y^2-4y+36=0 | | x+75^2=-4×3^2 | | 3y-4=360 | | (x+60)+(8x-10)=360 | | 7/10=m/51-m | | y=1.7+1 | | -2=-4+f | | -2(3p+3)=6(5+p) | | b-43=9-b2 | | 0,5y=1 | | -0,6x=-1,2 | | 0,2x=0,4 | | 3(a-2)+4a=2(3a-2) | | -0,7x=1,4 | | -0,7x=1,4 | | 5,5x=16,5 | | 58+c=4c+7 | | 2x+3=30+0,2 |

Equations solver categories