2,484=23(p+35)

Simple and best practice solution for 2,484=23(p+35) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2,484=23(p+35) equation:



2.484=23(p+35)
We move all terms to the left:
2.484-(23(p+35))=0
We calculate terms in parentheses: -(23(p+35)), so:
23(p+35)
We multiply parentheses
23p+805
Back to the equation:
-(23p+805)
We get rid of parentheses
-23p-805+2.484=0
We add all the numbers together, and all the variables
-23p-802.516=0
We move all terms containing p to the left, all other terms to the right
-23p=802.516
p=802.516/-23
p=-34+13.5329815303/15.1715039578

See similar equations:

| 5x^2+10x=20 | | 9)-8(-(x+4))=0 | | -7+7k=-7(1-1) | | x/x-7+3=7/x-7 | | 9)-8=-(x+4) | | 10m2-3m=2(2-3m) | | 10-3x=30-43x | | 6(4n+3)=27-5n | | -(-6+6x)=11-6x | | 5x+7+x=2(3x-4) | | 2(5-6z)=23 | | -1/3x+2=-7 | | (x^2-6x+14)(x^2-4x+4)=0 | | 18=2/5(x)-6 | | 4x-1=6x+9=2x+17 | | 4x-7+2x=(3x-3) | | -16-8m=-8(m+2) | | -x-7=3(2x+4) | | Y-5y=8+12Y | | x(3x-3)=(3x+2)(x-1) | | -34-6z=3(4z×2) | | 10x=500+75 | | 0=12t^2-35t-70 | | 3x-5(1/3x)=10 | | -25=-4+3(a+8) | | 0.3n-5=0.4-0.2(n-7) | | 8h-4+2=20 | | 2(3t-8-4t=10 | | 6x+412=12x+136 | | 20+1.25x=30+2.5x. | | 2+85y=685 | | z^2-18z+130=0 |

Equations solver categories