2-2/4k=1/8k+9

Simple and best practice solution for 2-2/4k=1/8k+9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2-2/4k=1/8k+9 equation:



2-2/4k=1/8k+9
We move all terms to the left:
2-2/4k-(1/8k+9)=0
Domain of the equation: 4k!=0
k!=0/4
k!=0
k∈R
Domain of the equation: 8k+9)!=0
k∈R
We get rid of parentheses
-2/4k-1/8k-9+2=0
We calculate fractions
(-16k)/32k^2+(-4k)/32k^2-9+2=0
We add all the numbers together, and all the variables
(-16k)/32k^2+(-4k)/32k^2-7=0
We multiply all the terms by the denominator
(-16k)+(-4k)-7*32k^2=0
Wy multiply elements
-224k^2+(-16k)+(-4k)=0
We get rid of parentheses
-224k^2-16k-4k=0
We add all the numbers together, and all the variables
-224k^2-20k=0
a = -224; b = -20; c = 0;
Δ = b2-4ac
Δ = -202-4·(-224)·0
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{400}=20$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-20}{2*-224}=\frac{0}{-448} =0 $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+20}{2*-224}=\frac{40}{-448} =-5/56 $

See similar equations:

| 20=4(x+3 | | -105=5x+75 | | 4c6c+14=4+4c | | -105=5x*75 | | 2x2+12x+20=0 | | 12=6+3y | | 10x-30=3x | | 5x+6x-3=2x+10 | | 35+2x+30+135=180 | | (x^2+7x)+(-6x^2-3x=) | | -7(7a-5)-4=4(-7+3a-2a | | 4(x+3)-4=89.5x+1) | | 2x2+8x-3=0 | | 82=2x+34 | | 1/2h=1/4h | | x-5=4x+2 | | 3x/4-4x/3=4 | | 6-10x+4=35-14x-1 | | (c+4)(c-4)=0 | | 4(z-1)=4z-4 | | (-6)-9x=(-9x)-4 | | 12=6+6y | | −7.8x=−1.56 | | 3/4k×3/8k=1/2 | | X+10=1x+5 | | 5+2x=2x6 | | (N/10)=9-(n/5) | | X-35=x | | 3|x-5|=12 | | (3z+4)(8+z)=0 | | 1/2x+10=18 | | x-3/4=7x+1/6 |

Equations solver categories