2-3/4k=1/8k+19

Simple and best practice solution for 2-3/4k=1/8k+19 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2-3/4k=1/8k+19 equation:



2-3/4k=1/8k+19
We move all terms to the left:
2-3/4k-(1/8k+19)=0
Domain of the equation: 4k!=0
k!=0/4
k!=0
k∈R
Domain of the equation: 8k+19)!=0
k∈R
We get rid of parentheses
-3/4k-1/8k-19+2=0
We calculate fractions
(-24k)/32k^2+(-4k)/32k^2-19+2=0
We add all the numbers together, and all the variables
(-24k)/32k^2+(-4k)/32k^2-17=0
We multiply all the terms by the denominator
(-24k)+(-4k)-17*32k^2=0
Wy multiply elements
-544k^2+(-24k)+(-4k)=0
We get rid of parentheses
-544k^2-24k-4k=0
We add all the numbers together, and all the variables
-544k^2-28k=0
a = -544; b = -28; c = 0;
Δ = b2-4ac
Δ = -282-4·(-544)·0
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{784}=28$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-28)-28}{2*-544}=\frac{0}{-1088} =0 $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-28)+28}{2*-544}=\frac{56}{-1088} =-7/136 $

See similar equations:

| 12=5t-4.9t^2 | | .75m+1.75=4.75 | | 71/2=2x+5(11/5) | | r+2r-13=25 | | x/2+20=8 | | 3r=5r-14 | | 3k-3k=-4k-12 | | (X-2)^2+(y+1)^2=5^2 | | 2x^2+8x-50=0 | | 1-n=-2n+7 | | 8^2x-1=32 | | 3v+13=58 | | x/7+x=5/14 | | -2x^2+16x-6=0 | | 32-3c-4=2c+10+c | | 0.9(x+50)+0.3x=81 | | 4+4=(5n+6)-n | | 25x^2-10x+98=0 | | −2x2+16x−6=0 | | 6x-2(x-1)+1=3+4(3+2x) | | 4x=64x= | | 6+3w=20 | | -(4+2^)+1=x | | a+5=-5a=5 | | x-117=317 | | -5+5a+8a=8 | | -x^2+580x-16500=0 | | -(4+2^2)=x | | -8x^2+3x=-10 | | -8x+3x=-10 | | 1/6(2*x-5)-2/3(x+7)-4*x=5/8(3*x-1)+1/4(5*x+2)-6 | | -t/7=1/1 |

Equations solver categories