2-3/4k=1/8k=9

Simple and best practice solution for 2-3/4k=1/8k=9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2-3/4k=1/8k=9 equation:



2-3/4k=1/8k=9
We move all terms to the left:
2-3/4k-(1/8k)=0
Domain of the equation: 4k!=0
k!=0/4
k!=0
k∈R
Domain of the equation: 8k)!=0
k!=0/1
k!=0
k∈R
We add all the numbers together, and all the variables
-3/4k-(+1/8k)+2=0
We get rid of parentheses
-3/4k-1/8k+2=0
We calculate fractions
(-24k)/32k^2+(-4k)/32k^2+2=0
We multiply all the terms by the denominator
(-24k)+(-4k)+2*32k^2=0
Wy multiply elements
64k^2+(-24k)+(-4k)=0
We get rid of parentheses
64k^2-24k-4k=0
We add all the numbers together, and all the variables
64k^2-28k=0
a = 64; b = -28; c = 0;
Δ = b2-4ac
Δ = -282-4·64·0
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{784}=28$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-28)-28}{2*64}=\frac{0}{128} =0 $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-28)+28}{2*64}=\frac{56}{128} =7/16 $

See similar equations:

| (4x-1)=(2x+9) | | 3x-6(34+6x)=30 | | 2(z+3)-8=2 | | -15=d-9 | | -9y+3(4y-11)=-24 | | 6(u+6)=-6(3u-5)+8u | | 9.19=0.44+(0.35×t) | | 5x^2-4x+20=(101/5) | | 10+q=-q-6 | | f+2÷3=2 | | 2/3x-1=64-13/3x | | 2z-z+2=-19 | | 4x-15-x+3=0 | | 4j=5j-9 | | 4.2x-45=x | | 10-4u-6u=-6-8u | | 21/5x-45=x | | -2(6w-6)+6w=7+2(4w-1) | | 3=p+5÷3 | | 4+6|-4k+2|=40 | | 6r+6=12 | | 3(3b-2)=-9+ | | -q+-18=1 | | 10−4u−6u=-6−8u | | -22=y-19 | | -5(y-2)=-8y+28 | | 8w-w-3w-3=17 | | 29x-29x=1 | | x2−7x+20=0 | | 5x+6x-10x=20 | | y+5y+4y=0 | | (x^2)+12x+13=5x+1 |

Equations solver categories