2-3x(2x+5)=(x-1)

Simple and best practice solution for 2-3x(2x+5)=(x-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2-3x(2x+5)=(x-1) equation:



2-3x(2x+5)=(x-1)
We move all terms to the left:
2-3x(2x+5)-((x-1))=0
We multiply parentheses
-6x^2-15x-((x-1))+2=0
We calculate terms in parentheses: -((x-1)), so:
(x-1)
We get rid of parentheses
x-1
Back to the equation:
-(x-1)
We get rid of parentheses
-6x^2-15x-x+1+2=0
We add all the numbers together, and all the variables
-6x^2-16x+3=0
a = -6; b = -16; c = +3;
Δ = b2-4ac
Δ = -162-4·(-6)·3
Δ = 328
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{328}=\sqrt{4*82}=\sqrt{4}*\sqrt{82}=2\sqrt{82}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-2\sqrt{82}}{2*-6}=\frac{16-2\sqrt{82}}{-12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+2\sqrt{82}}{2*-6}=\frac{16+2\sqrt{82}}{-12} $

See similar equations:

| 144=v2 | | 3(x^2)+((3x)/2)=0 | | f2=16 | | 4900+b^2=5184 | | 10c-900=5c+1100 | | 36=v2 | | 9x-150=8x+200 | | 90=4x+74 | | 81+b^2=113 | | 0.04+0.006x=0.008x-0.02 | | 47+b^2=100 | | 0.04+0.006x=0.008-0.02 | | 64+b^2=91 | | 36+b^2=91 | | 7+y/3=-3 | | 21x=5x-9 | | x/2-23=28 | | 2x+70=30–2x | | 3600+b^2=3721 | | -28=-8w+5(w-5) | | 6y=11=7 | | 60+b^2=61 | | -2u+8(u+5)=-20 | | -3(2x-1)=6(x-1)-3x | | 0.5x+1.5=x.75 | | x-x*30/100=42 | | -26=2v+5(v-8) | | 64+a^2=73 | | 1x+2=4x+10 | | 3.6y+4.8=19.92 | | 36+b^2=169 | | 8x+12+6x=–9+7x* |

Equations solver categories