If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2-3x+4x/9x-(8x-7)=4/3
We move all terms to the left:
2-3x+4x/9x-(8x-7)-(4/3)=0
Domain of the equation: 9x!=0We add all the numbers together, and all the variables
x!=0/9
x!=0
x∈R
-3x+4x/9x-(8x-7)+2-(+4/3)=0
We get rid of parentheses
-3x+4x/9x-8x+7+2-4/3=0
We calculate fractions
-3x-8x+12x/27x+(-36x)/27x+7+2=0
We add all the numbers together, and all the variables
-11x+12x/27x+(-36x)/27x+9=0
We multiply all the terms by the denominator
-11x*27x+12x+(-36x)+9*27x=0
We add all the numbers together, and all the variables
12x-11x*27x+(-36x)+9*27x=0
Wy multiply elements
-297x^2+12x+(-36x)+243x=0
We get rid of parentheses
-297x^2+12x-36x+243x=0
We add all the numbers together, and all the variables
-297x^2+219x=0
a = -297; b = 219; c = 0;
Δ = b2-4ac
Δ = 2192-4·(-297)·0
Δ = 47961
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{47961}=219$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(219)-219}{2*-297}=\frac{-438}{-594} =73/99 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(219)+219}{2*-297}=\frac{0}{-594} =0 $
| x-15=2x+1 | | 2x+7x=77 | | (3x-15)=4(x-18) | | x+3/5=y | | (2)x+9=2x-3 | | 2x-20=50-x | | 93-y=217 | | 9b+1+147=180 | | x^2+3x+150=0 | | x^2+36x-36=0 | | 2x3x=55 | | 4x-31=3x-20 | | m4+m2+1=0 | | 2(2x+15)=6x-10+24 | | 11x-16+7x-2=180 | | 17x/2=10/2 | | 2x/2=80/2 | | 6x-7=-28 | | -10c-5=20 | | 2^x+22^6-x=16 | | 9(2x+15=6(4x+2) | | 7(x-2)-8-(4-3x)=47 | | 6^(2x+1)=2^(2x+1) | | 3(1-2x)=18-x | | 4^5x-(2^3x)^2=256 | | 1710=101x | | 3x+22=8x-3 | | 3(x+5)+7(x-1)-8(2x-15)=x/2 | | 6x-8=5x+16 | | 5^x^2+2x=1/5 | | 4/x+1=7/3x-2 | | 55.6x=88.7 |