2-4(y-1)=5y+(y-3);y=3

Simple and best practice solution for 2-4(y-1)=5y+(y-3);y=3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2-4(y-1)=5y+(y-3);y=3 equation:



2-4(y-1)=5y+(y-3)y=3
We move all terms to the left:
2-4(y-1)-(5y+(y-3)y)=0
We multiply parentheses
-4y-(5y+(y-3)y)+4+2=0
We calculate terms in parentheses: -(5y+(y-3)y), so:
5y+(y-3)y
We multiply parentheses
y^2+5y-3y
We add all the numbers together, and all the variables
y^2+2y
Back to the equation:
-(y^2+2y)
We add all the numbers together, and all the variables
-4y-(y^2+2y)+6=0
We get rid of parentheses
-y^2-4y-2y+6=0
We add all the numbers together, and all the variables
-1y^2-6y+6=0
a = -1; b = -6; c = +6;
Δ = b2-4ac
Δ = -62-4·(-1)·6
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{15}}{2*-1}=\frac{6-2\sqrt{15}}{-2} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{15}}{2*-1}=\frac{6+2\sqrt{15}}{-2} $

See similar equations:

| (3+i)-(5-2i)=0 | | 2-4(y-1)=5y+(y-3) | | x+17+2x=180 | | 666=666x | | 5(3x-2)=7(x+6)-(2x+17) | | 8x=1,2 | | a/4-12=8 | | 0.2x-8=15 | | 2w+25=-61 | | 3(m-7/2)=-2(m+6/3) | | (4-5i)+(2+7i)=0 | | 1+7m=5m-7 | | 6x-2+8x+10=8 | | 3x/4-x-1/2=x-2/3 | | 10y-15=35 | | 16+y/6=14 | | 1x=7(x=6) | | 20=-4(3a-) | | 5x+3/4-5=2x-2)/3 | | 6z-9=7z-1 | | 3(0)-3y=6 | | 10y+8=-62 | | $85-23x=191$ | | 2(x-3)+1=-2+5 | | 4n-13+63=180 | | z^2=0.49 | | 15x-3=14x+4 | | .3x=176,000 | | (8x-12)+50=180 | | 591=6(1-12x)+7x | | 4w-25=23 | | 4(x+8)=2x-16 |

Equations solver categories