2-5/6x+1/10x-4/5=0

Simple and best practice solution for 2-5/6x+1/10x-4/5=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2-5/6x+1/10x-4/5=0 equation:



2-5/6x+1/10x-4/5=0
Domain of the equation: 6x!=0
x!=0/6
x!=0
x∈R
Domain of the equation: 10x!=0
x!=0/10
x!=0
x∈R
We calculate fractions
(-240x^2)/1500x^2+(-1250x)/1500x^2+150x/1500x^2+2=0
We multiply all the terms by the denominator
(-240x^2)+(-1250x)+150x+2*1500x^2=0
We add all the numbers together, and all the variables
(-240x^2)+150x+(-1250x)+2*1500x^2=0
Wy multiply elements
(-240x^2)+3000x^2+150x+(-1250x)=0
We get rid of parentheses
-240x^2+3000x^2+150x-1250x=0
We add all the numbers together, and all the variables
2760x^2-1100x=0
a = 2760; b = -1100; c = 0;
Δ = b2-4ac
Δ = -11002-4·2760·0
Δ = 1210000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1210000}=1100$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1100)-1100}{2*2760}=\frac{0}{5520} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1100)+1100}{2*2760}=\frac{2200}{5520} =55/138 $

See similar equations:

| 593x^2+42*10^6x-63*10^12=0 | | 5+m=0.3m | | 25/x=5/1 | | 25|x=5|1 | | X=-72x+21÷7 | | 2x+21÷7x=7 | | 4n+2=6(1/3n12/3) | | 8-(10-k)=2k | | 1.8=-0.09p | | 10(0.4x+0.5x)=4x | | 9a-15=40-4a | | (5x-10)/2+(9-x)/6=3 | | -12x-(8x+4)+10x=-2x(x+1) | | 2y/3+1=7y/15+3 | | 2y3+1=7y/15+3 | | 3x+x=154 | | 2y+3/3y+2=4y+5/6y+7 | | 4x+6=-3x-7 | | x2/x=0 | | 7=(x+4)4 | | 4x(2x/3+8=40 | | 2y+5/3=26-y/3 | | x+1/1=x+13/13 | | 3x(4-4x)=0 | | 2x÷5-1÷2=×÷5 | | 21x-6=11x-56 | | (D+4)y=0 | | 3(2-x)-5(x-2)=x-2(3-x) | | 5x-10/2+9-x/6=3 | | 3(2x+1)=3(x-1)-2(x-3) | | 3/7*x^2-60x+1000=0 | | 19-2(1+x)/5=7 |

Equations solver categories