If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2-x=(1/7)(7-x)
We move all terms to the left:
2-x-((1/7)(7-x))=0
Domain of the equation: 7)(7-x))!=0We add all the numbers together, and all the variables
x∈R
-x-((+1/7)(-1x+7))+2=0
We add all the numbers together, and all the variables
-1x-((+1/7)(-1x+7))+2=0
We multiply parentheses ..
-((-1x^2+1/7*7))-1x+2=0
We multiply all the terms by the denominator
-((-1x^2+1-1x*7*7))+2*7*7))=0
We calculate terms in parentheses: -((-1x^2+1-1x*7*7)), so:We add all the numbers together, and all the variables
(-1x^2+1-1x*7*7)
We get rid of parentheses
-1x^2-1x*7*7+1
Wy multiply elements
-1x^2-49x*7+1
Wy multiply elements
-1x^2-343x+1
Back to the equation:
-(-1x^2-343x+1)
-(-1x^2-343x+1)=0
We get rid of parentheses
1x^2+343x-1=0
We add all the numbers together, and all the variables
x^2+343x-1=0
a = 1; b = 343; c = -1;
Δ = b2-4ac
Δ = 3432-4·1·(-1)
Δ = 117653
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(343)-\sqrt{117653}}{2*1}=\frac{-343-\sqrt{117653}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(343)+\sqrt{117653}}{2*1}=\frac{-343+\sqrt{117653}}{2} $
| 21=-3(x+11) | | 3/10(n-5)=4/10-2/10n | | 36=x18 | | 20+x=1028-3x | | 20+x=62 | | x=24-3 | | 16x+74=104 | | 2-x=((4-3)/(5+2))(7-x) | | -3.5x-19.5+8.8x=10.74 | | 3/7(x+1)=1/28(x+3) | | 88-z=-12 | | 6x-4(x-3)=5(3×-6)+7x | | 4y-15=91 | | --3/4=2(x-2) | | 2x+14+x=22+2x | | x-(2)1/4=1/18 | | 3x-8-(3x/4)+2=5x-16 | | 3x+7=463 | | 3x/5+5=29 | | -60x+600=40x-200 | | 7|m-4|=28 | | 0.233-3.1x=x | | 3x-8-3x/4+2=5x-16 | | 15x-3-4(2x)=0.5 | | 2(j+6)=9j-23 | | 10-j=34 | | 2x+5/4=x-3/2 | | q/9=12 | | 2a-7+4a=8 | | 7m-4=28 | | -15-2r=r+3 | | 7g-4=-11 |