2.3x-5=1/6x+3

Simple and best practice solution for 2.3x-5=1/6x+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2.3x-5=1/6x+3 equation:



2.3x-5=1/6x+3
We move all terms to the left:
2.3x-5-(1/6x+3)=0
Domain of the equation: 6x+3)!=0
x∈R
We get rid of parentheses
2.3x-1/6x-3-5=0
We multiply all the terms by the denominator
(2.3x)*6x-3*6x-5*6x-1=0
We add all the numbers together, and all the variables
(+2.3x)*6x-3*6x-5*6x-1=0
We multiply parentheses
12x^2-3*6x-5*6x-1=0
Wy multiply elements
12x^2-18x-30x-1=0
We add all the numbers together, and all the variables
12x^2-48x-1=0
a = 12; b = -48; c = -1;
Δ = b2-4ac
Δ = -482-4·12·(-1)
Δ = 2352
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2352}=\sqrt{784*3}=\sqrt{784}*\sqrt{3}=28\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-48)-28\sqrt{3}}{2*12}=\frac{48-28\sqrt{3}}{24} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-48)+28\sqrt{3}}{2*12}=\frac{48+28\sqrt{3}}{24} $

See similar equations:

| 6d+7+113=90 | | 2x2+6x+18=0 | | -3(-6x+3)-3=6(x-2)-3 | | 56/2n=4 | | 2e-7+49=90 | | 2.5(x+5)=7.5-0.5 | | 29/n=2 | | 24x-21=3(2x-1) | | 4x+5x+11=29 | | Y=2•4^x | | 5(2a+5)=7a-10 | | 500x+2000=7000 | | 1/2(1-2x)=3-6/10x | | -6y-18=-30 | | 8(6x-3)=13 | | 2^(x+5)=4 | | 2^(3x-3)=8 | | 3^(2x+6)=9 | | C(n)=4+3n | | (Z)x27=38 | | 2-15h=-5h+3(8-4h | | 5x9=9x | | -1/6(12+18t)=13 | | y+10=10y | | d-23/9=6 | | 8b-15=9 | | f/5+40=43 | | v+18/8=5 | | 4m-8=52 | | 7(q+5)=49 | | 24-3f-5=-2(5f+8 | | 2.5y+7.2=32.2 |

Equations solver categories