2.5x(6x-4)=10+4(1.5+0.5x)

Simple and best practice solution for 2.5x(6x-4)=10+4(1.5+0.5x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2.5x(6x-4)=10+4(1.5+0.5x) equation:



2.5x(6x-4)=10+4(1.5+0.5x)
We move all terms to the left:
2.5x(6x-4)-(10+4(1.5+0.5x))=0
We add all the numbers together, and all the variables
2.5x(6x-4)-(10+4(0.5x+1.5))=0
We multiply parentheses
12x^2-8x-(10+4(0.5x+1.5))=0
We calculate terms in parentheses: -(10+4(0.5x+1.5)), so:
10+4(0.5x+1.5)
determiningTheFunctionDomain 4(0.5x+1.5)+10
We multiply parentheses
0x+6+10
We add all the numbers together, and all the variables
x+16
Back to the equation:
-(x+16)
We get rid of parentheses
12x^2-8x-x-16=0
We add all the numbers together, and all the variables
12x^2-9x-16=0
a = 12; b = -9; c = -16;
Δ = b2-4ac
Δ = -92-4·12·(-16)
Δ = 849
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-\sqrt{849}}{2*12}=\frac{9-\sqrt{849}}{24} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+\sqrt{849}}{2*12}=\frac{9+\sqrt{849}}{24} $

See similar equations:

| 27=15=n | | (x-1/2*x+10)-1/2=0 | | x=50=20 | | 0=20-5/8n | | 5-3=x/2 | | 5x+11x-5=75 | | 108*3.14=6*3.14j | | 10x15x+5=-45+20 | | z/4+6=8-z/44 | | 6a-5=49+2 | | 3k^2+15=14k | | y=48-15 | | 65x+375=700 | | 2x+1=2x-16 | | 2x+1=1x-16 | | 13x+9=14x-7 | | x+2.7=9.24 | | 2x+1=-1-16 | | 7/4x+1/4x=8 | | 10h−4h=12 | | 4-5(7x+2)=3 | | 2-x3/4=-5 | | x^2-x;x=2 | | -2.3+x/5=14.8 | | 2^x+1)^2=64 | | 2x+3-4x+1=-5x+8+3x-6 | | 3/7x-5=12 | | 8x=8x+23 | | -.66w=14 | | (2x–5)=(x+5) | | 225=15n | | 6x^2+4x-13=0 |

Equations solver categories