2.5x(x-10)+(x-40)+x=360

Simple and best practice solution for 2.5x(x-10)+(x-40)+x=360 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2.5x(x-10)+(x-40)+x=360 equation:



2.5x(x-10)+(x-40)+x=360
We move all terms to the left:
2.5x(x-10)+(x-40)+x-(360)=0
We add all the numbers together, and all the variables
x+2.5x(x-10)+(x-40)-360=0
We multiply parentheses
2x^2+x-20x+(x-40)-360=0
We get rid of parentheses
2x^2+x-20x+x-40-360=0
We add all the numbers together, and all the variables
2x^2-18x-400=0
a = 2; b = -18; c = -400;
Δ = b2-4ac
Δ = -182-4·2·(-400)
Δ = 3524
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3524}=\sqrt{4*881}=\sqrt{4}*\sqrt{881}=2\sqrt{881}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{881}}{2*2}=\frac{18-2\sqrt{881}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{881}}{2*2}=\frac{18+2\sqrt{881}}{4} $

See similar equations:

| -10-a=-18 | | 13-4x=2(x+5)-8x | | X1/3=x-3 | | 0+3y=-5 | | -7(x+4)-13=20+2 | | X+18=6x+28 | | 7n+23=2n+23 | | f/5+8=16 | | 1.2+4x=3.5+2x | | 20y-26=14 | | 9+5m-m=3 | | 9(6)*3(4)=3k | | p+3/5=4/11 | | 7.5x=30 | | -9(n-956)=-4 | | 6=-6u+18 | | 46+8x-23=7 | | (X1/3)3=x | | 5(3-4a)+4=19+6a | | -5=u/3+4 | | 5n+20=10n | | 6x+7=16= | | -4=7x-(-1)~-8 | | |2x-3|+5=10 | | 10u^2+31u+3=0 | | 9^6*3^4=3k | | 4(t-70)+14=90 | | 9x-11=2x+12 | | 2.4a-a=2.5a-a-4.5 | | -7x+3=-7+3 | | 4b+8~-2=10 | | -(x+1)=-4x+11 |

Equations solver categories